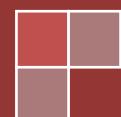


Turkish Online Journal of Educational Technology

Volume 25, Issue 1

January 2026

Prof. Dr. Aytekin İşman
Editor-in-Chief


Editors

Prof. Dr. Jerry Willis - ST John Fisher University in Rochester, USA
Prof. Dr. J. Ana Donaldson - AECT President

Professor Emerita Dr. Teresa Franklin – Ohio University, Athens
Assoc. Prof. Dr. Fahme Dabaj - Eastern Mediterranean University, TRNC

Associate Editors

Assoc. Prof. Dr. Mustafa Öztunç - Sakarya University, Turkey

THE TURKISH ONLINE JOURNAL OF EDUCATIONAL TECHNOLOGY

January 2026
Volume 25 – Issue 1

Prof. Dr. Aytekin İşman
Editor-in-Chief

ISSN: 2146 - 7242

Indexed by
Education Research Index
ERIC
EBSCOhost – Current Abstracts
EBSCOhost – Education Research Index
EBSCOhost – TOC Premier
Cabell's Directories
Index Copernicus Journal Master List

Copyright © THE TURKISH ONLINE JOURNAL OF EDUCATIONAL TECHNOLOGY

All rights reserved. No part of TOJET's articles may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

Published in TURKEY

Contact Address:

Prof. Dr. Aytekin İŞMAN
TOJET, Editor in Chief
Sakarya-Turkey

Message from the Editor-in-Chief

Editors' Note

The January 2026 issue of The Turkish Online Journal of Educational Technology (TOJET) presents a comprehensive and globally representative collection of scholarly studies that explore the intersections of educational technology, artificial intelligence, digital pedagogy, inclusive education, leadership, and learner engagement. The contributions in this issue collectively reflect how technology-enhanced learning environments are reshaping teaching practices, learner experiences, institutional leadership, and educational policy across diverse cultural and national contexts.

A significant number of studies in this issue focus on the pedagogical, cognitive, and behavioral implications of artificial intelligence and emerging digital technologies. The article “Exploring the Effectiveness of AI-Generative Tools in Improving Vocabulary and Engagement among Elementary School Students in Oman” by Fatma Al Naabi and Maimoona Al Abri provides empirical evidence demonstrating how AI-supported instructional tools positively influence vocabulary development and student engagement at the primary education level. Extending this discussion to higher education, “Acceptance of Artificial Intelligence Tools among Undergraduates: An Application of the Technology Acceptance Model” by Edwin Osmil Coreas-Flores examines undergraduate students’ perceptions, attitudes, and behavioral intentions toward AI-based tools through the lens of the Technology Acceptance Model (TAM), offering valuable insights into the factors influencing AI adoption in university learning environments. Complementing these empirical perspectives, “Understanding How Generative AI Cultivates Self-Directed Learning Capabilities” by Guo Shouchao, Xu Ningjie, and Xu Zhenguo offers a conceptual framework that situates generative AI within the historical evolution of digital technologies, highlighting its role in promoting learner autonomy and lifelong learning competencies.

Digital and blended learning environments constitute another prominent theme of this issue. The study “Hong Kong Students’ Perception of Providing Students with Digital Learning Materials Improves Learning Experience” by Hon Keung Yau, Wai Keung Chiu, and Yu Jin Cheah investigates students’ perspectives on digital learning resources and their impact on learning satisfaction and effectiveness. Similarly, “The Development of Blended Teaching Using Learning Platforms in College English Education under the Influence of AI” by Yan Xinli and Naruemon Thepnuan examines how AI-enhanced learning platforms support blended instructional models in higher education language teaching.

Issues related to inclusion, equity, and learner diversity are addressed through multiple empirical and experimental studies. The randomized controlled trial “Pre-Service Teachers’ Beliefs About Classroom Management: The Mediating Role in the Relationship Between Perceptions of Teacher Education and Self-Efficacy in Inclusive Classroom Management” by Yogaranee Sakthivel provides strong evidence that flipped learning designs can significantly enhance pre-service teachers’ confidence and preparedness for inclusive educational practices. Complementing this focus on inclusive learning environments, “Application of Strategies for Conflict Resolution for First-Year Undergraduate Students in Yunnan Province, China” by Yanyan Fan and Thosporn Sangsawang explores instructional strategies aimed at developing interpersonal and conflict resolution skills among university students, emphasizing the role of educational interventions in fostering social and emotional competencies in higher education.

The issue also highlights digital inclusion, leadership, and governance in education. The comparative policy analysis “Contrasting National Strategies for Digital Inclusion in Education: A Comparative Analysis of Mauritius and Singapore” by Karolina Radyńska-Cenkier offers valuable insights into how national-level strategies shape equitable access to educational technologies. At the institutional level, “An Examination of the Views on the Technological Leadership of School Administrators Working in Primary Schools in North Cyprus” by Gamze Dağ and Sonay Dericioğlu underscores the importance of visionary and competent leadership in the effective integration of technology within schools.

The social and psychological dimensions of digital culture are critically examined in “The Unseen Observer: The Psychology of Silent Following in Social Media Culture” by Ferhat Atik, which sheds light on passive participation, visibility, and engagement in online social environments. In a related vein, “Examination of University Students’ Perceptions of Online Social Capital” by Gönül Şener explores how digital platforms influence social interaction, trust, and academic collaboration among university students.

Teacher education and quality assurance emerge as another key thematic strand. “Core Quality Components in Contemporary Teacher Education Systems” by Jafar Jafarov presents a strategic and institutional perspective on quality frameworks in teacher education, emphasizing sustainability, leadership, and systemic improvement in higher education systems.

Language learning and collaborative digital practices are addressed in “Arabic Learners’ Perceptions of Google Docs-Mediated Small-Group Collaborative Writing” by Maher Abdel Alkhateeb, highlighting the pedagogical value of collaborative technologies in supporting language development and learner engagement. Finally, “Enhancing Vocational Graduate Employability through Mobile Applications on Advanced Quantitative Modeling of Skills and Partnerships” by Yang Wang and Thosporn Sangsawang focuses on vocational education, demonstrating how mobile learning applications can strengthen employability skills and industry–education partnerships.

Taken together, the articles in this issue reflect TOJET’s ongoing commitment to advancing high-quality, interdisciplinary research on educational technology, artificial intelligence, inclusive education, leadership, and digital transformation. We believe that the theoretical perspectives and empirical findings presented in this issue will offer valuable insights to researchers, educators, practitioners, and policymakers seeking to design more inclusive, effective, and future-oriented learning environments.

On behalf of the editorial board, I extend my sincere appreciation to all authors and reviewers for their scholarly contributions and dedication. We hope that this issue will stimulate further research, dialogue, and innovation in the rapidly evolving field of educational technology.

Call for Papers:

TOJET welcomes academic studies in the field of educational technology. Submitted articles may address topics such as the use of technology in classrooms, the impact of technology on learning, and the perspectives of students, teachers, administrators, and the community on educational technology. Such studies will enhance the quality of theoretical and practical approaches in educational technology.

Article Submission Criteria:

- Submitted articles must be original, unpublished, and not under consideration by another publication.
- Articles may cover a wide range of topics, including assessment, attitudes and beliefs, curriculum design, equity, applied research, learning theories, sociocultural issues, and educational practices for special populations.

Warm regards,

Editor-in-Chief

Prof. Dr. Aytekin İŞMAN
Sakarya University
Prof. Dr. Teresa Franklin
Ohio University
The Turkish Online Journal of Educational Technology (TOJET)
January 2026

Editorial Board

Editor in Chief

Prof.Dr. Aytokin İşman - Sakarya University, Turkey

Editorial Review Board

Prof.Dr. Abdullah Kuzu - Turkey

Prof.Dr. Adile Aşkım Kurt - Anadolu University, Turkey

Prof.Dr. Ahmet Zeki Saka - Karadeniz Technical University, Turkey

Prof.Dr. J. Ana Donaldson - AECT Former President

Prof.Dr. Aytokin İşman - Sakarya University, Turkey

Prof.Dr. Betul Ozkan Czerkawski, University of Arizona, Educational Technology Department, USA

Prof.Dr. Bükret Akkoyunlu - Çankaya University, Turkey

Prof.Dr. Cengiz Hakan Aydin - Anadolu University, Turkey

Prof.Dr. Colleen Sexton - Governor State University, USA

Prof.Dr. Emine Demiray - Anadolu University, Turkey

Prof.Dr. Eralp Altun - Ege University, Turkey

Prof.Dr. Fahriye Altınay - Near East University

Prof.Dr. Ferhan Odabaşı - Anadolu University, Turkey

Prof.Dr. Müjgan YAZICI – Anadolu University

Prof.Dr. Murat Ataizi - Anadolu University, Turkey

Prof.Dr. Murat Barkan - Anadolu University, Turkey

Prof.Dr. NOEL J. Petero – Math Education - Tarlac Agricultural University, Philippines

Prof.Dr. Satish Pawar - Savitribai Phule Pune University, Pune, India

Prof.Dr. Stephen Harmon - Georgia State University, USA

Prof.Dr. Teressa Franklin - Ohio University, USA

Prof.Dr. Vincent Ru-Chu Shih - National Pingtung University of Science and Technology, Taiwan

Prof.Dr. Yavuz Akpinar - Boğaziçi University, Turkey

Prof.Dr. Zehra Altınay - Near East University

Assoc.Prof.Dr. Aijaz Ahmed Gujjar - Sindh Madressatul Islam University, Pakistan

Assoc.Prof.Dr. Amirul Mukminin - Universitas Jambi - Indonesia

Assoc.Prof.Dr. Eric Zhi Feng Liu - National central university, Taiwan

Assoc.Prof.Dr. Fahad N. AlFahad - King Saud University

Assoc.Prof.Dr. Fahme Dabaj - Eastern Mediterranean University, TRNC

Assoc.Prof.Dr. Hasan Çalışkan - Anadolu University, Turkey

Assoc.Prof.Dr. Mustafa Öztunç - Sakarya University, Sakarya, Turkey

Assoc.Prof.Dr. Nilesh Anute, Savitribai Phule Pune University, Pune, India

Assoc.Prof.Dr. Norazah Mohd Suki - Universiti Malaysia Sabah, Malaysia

Assoc.Prof.Dr. Normaliza Abd Rahim - Universiti Putra Malaysia, Malaysia

Assoc. Prof. Dr. Omid Noroozi, Wageningen University and Research, Netherlands

Assoc.Prof.Dr. Prakash Khanale - Dnyanopasak College, INDIA

Assoc.Prof.Dr. Pramela Krish - Universiti Kebangsaan Malaysia, Malaysia

Assoc.Prof.Dr. Seema H Kadam - The Mandvi Education Society's Institute of Business Management and Computer Studies,(Affiliated to Gujarat Technological University), Technical Campus,Mandvi(Surat), India

Assoc.Prof.Dr. Seçil Kaya - Anadolu University, Turkey

Assoc.Prof.Dr. Zehra Alakoç Burma - Mersin University, Turkey

Assoc.Prof.Dr. Zhi - Feng Liu - National Central University, Taiwan

Assist.Prof.Dr. Lotfi Salhi - University of Gafsa, Tunisia

Assist.Prof.Dr. Mohammad Akram Mohammad Al-Zu'bi - Jordan Al Balqa Applied University, Jordan

Assist.Prof.Dr. Nadiah Abdul Aziz - Rahman University of Management and Technology

Kuala Lumpur, Malesia

Dr.Danielle N. Aming - Embry-Riddle Aeronautical University, USA

Dr John Chun Yin WONG - School of Chinese Faculty of Arts, The University of Hong Kong (HKU)

Dr.Renata Kuba Florida State University, Florida, USA

Dr. Stamatis Papadakis - University of Crete, Greece

Editorial Board

Prof.Dr. Ali Al Mazari - Alfaisal University, Kingdom of Saudi Arabia

Prof.Dr. Ali Ekrem Özkul - Anadolu University, Turkey

Prof.Dr. Anela Nikčević-Milković - University of Zadar, Croatia
Prof.Dr. Anil P. Gaikwad - Yashwantrao Chavan Maharashtra Open University, India
Prof.Dr. Antoinette J. Muntjewerff - University of Amsterdam
Prof.Dr. Arvind Singhal - University of Texas, USA
Prof.Dr. Asaf Varol - Fırat University, Turkey
Prof.Dr. Aytac Göğüş - Okan University, Turkey
Prof.Dr. Aytekin İşman - Sakarya University, Turkey
Prof.Dr. Bashar H. Malkawi - University of Sharjah, Sharjah
Prof.Dr. Brent G. Wilson - University of Colorado at Denver, USA
Prof.Dr. Carmencita L. Castolo - Polytechnic University of the Philippines, Philippines
Prof.Dr. Chang-Shing Lee - National University of Tainan, Taiwan
Prof.Dr. Charlotte N. (Lani) Gunawardena - University of New Mexico, USA
Prof.Dr. Chi - Jui Lien - National Taipei University of Education, Taiwan
Prof.Dr. Chih - Kai Chang - National University of Taiwan, Taiwan
Prof.Dr. Chin-Min Hsiung - National pingtung university, Taiwan
Prof.Dr. Demetrios G. Sampson - University of Piraeus, Greece
Prof.Dr. Dimiter G. Velev - University of National and World Economy, Bulgaria
Prof.Dr. Erkan Tekinarslan. Bolu Abant Izzet Baysal University, Turkey
Prof.Dr. Feng-chiao Chung - National pingtung university, Taiwan
Prof.Dr. Finland Cheng - National pingtung university, Taiwan
Prof.Dr. Fong Soon Fook - Uniiversiti Sains Malaysia, Malaysia
Prof.Dr. Gwo - Dong Chen - National Central University Chung - Li, Taiwan
Prof.Dr. Hasan KARAL - Trabzon University, Turkey
Prof.Dr. Heli Ruokamo - University of Lapland, Finland
Prof.Dr. Henry H.H. Chen - National pingtung university, Taiwan
Prof.Dr. Hüseyin Yaratan - Cyprus International University, TRNC
Prof.Dr. Ing. Giovanni Adorni - University of Genova, Italy
Prof.Dr. İşıl Kabakçı - Anadolu University, Turkey
Prof.Dr. J. Michael Spector - University of North Texas, USA
Prof.Dr. Jerry Willis - ST John Fisher University in Rochester, USA
Prof.Dr. Jie-Chi Yang - National central university, Taiwan
Prof.Dr. Kinshuk - Athabasca University, Canada
Prof.Dr. Kiyoshi Nakabayashi - Chiba Institute of Technology, Japan
Prof.Dr. Kumiko Aoki - The Open University of Japan, Japan
Prof.Dr. Kuo - En Chang - National Taiwan Normal University, Taiwan
Prof.Dr. Kuo - Hung Tseng - Meiho Institute of Technology, Taiwan
Prof.Dr. Kuo - Robert Lai - Yuan - Ze University, Taiwan
Prof.Dr. Liu Meifeng - Beijing Normal University, China
Prof.Dr. Manoj Kumar Saxena - Central University of Himachal Pradesh, Dharamshala, Kangra, India
Prof.Dr. Marina Stock Mcisaac - Arizona State University, USA
Prof.Dr. Mehmet Çağlar - Near East University,
Prof.Dr. Mehmet Gürol - Yıldız Technical University, Turkey
Prof.Dr. Mehmet Kesim - Anadolu University, Turkey
Prof.Dr. Mei-Mei Chang - National pingtung university, Taiwan
Prof.Dr. Melissa Hui-Mei Fan - National central university, Taiwan
Prof.Dr. Min Jou - National Taiwan Normal University, Taiwan
Prof.Dr. Ming - Puu Chen - National Taiwan Normal University, Taiwan
Prof.Dr. Murat Ataizi - Anadolu University, Turkey
Prof.Dr. Murat Barkan - Anadolu University, Turkey
Prof.Dr. Nabi Bux Jumani - International Islamic University, Pakistan
Prof.Dr. Nian - Shing Chen - National Sun Yat - Sen University, Taiwan
Prof.Dr. Paul Gibbs - Middlesex University, UK
Prof.Dr. Ramdane Younsi - Ecole polytechnique de Montreal, Canada
Prof.Dr. Roger Hartley - University of Leeds, UK
Prof.Dr. Rozhan Hj. Mohammed Idrus - Universiti Sains Malaysia, Malaysia
Prof.Dr. Saedah Siraj - University of Malaya, Malaysia
Prof.Dr. Sello Mokoena - University of South Africa, South Africa
Prof.Dr. Selma Koç - Cleveland State University, Cleveland
Prof.Dr. Servet Bayram - Yeditepe University, Turkey
Prof.Dr. Shan - Ju Lin - National Taiwan University, Taiwan

Prof.Dr. Sheng Quan Yu - Beijing Normal University, China
Prof.Dr. Shi-Jer Lou - National pingtung university, Taiwan
Prof.Dr. Shu - Sheng Liaw - China Medical University, Taiwan
Prof.Dr. Shu-Hsuan Chang - National Changhua University of Education, Taiwan
Prof.Dr. Stefan Aufenanger - University of Mainz, Germany
Prof.Dr. Stephen Harmon - Georgia State University, USA
Prof.Dr. Stephen J.H. Yang - National Central University, Taiwan
Prof.Dr. Sun Fuwan - China Open University, China
Prof.Dr. Sunny S.J. Lin - National Chiao Tung University, Taiwan
Prof.Dr. Toshio Okamoto - University of Electro - Communications, Japan
Prof.Dr. Toshiyuki Yamamoto - Japan
Prof.Dr. Tzu - Chien Liu - National Central University, Taiwan
Prof.Dr. Vaseudev D.Kulkarni - Hutatma Rajguru College, Rajguruunagar(Pune),(M.S.) INDIA
Prof.Dr. Xibin Han - Tsinghua University, China
Prof.Dr. Yau Hon Keung - City University of Hong Kong, Hong Kong
Prof Dr. Yavuz Akbulut - Anadolu University, Turkey
Prof.Dr. Yen-Hsyang Chu - National central university, Taiwan
Prof.Dr. Yuan - Chen Liu - National Taipei University of Education, Taiwan
Prof.Dr. Yuan-Kuang Guu - National pingtung university, Taiwan
Prof.Dr. Young-Kyung Min - University of Washington, USA
Assoc.Prof.Dr. Aijaz Ahmed Gujar - Sindh Madressatul Islam University, Pakistan
Assoc.Prof.Dr. Amirul Mukminin - Universitas Jambi - Indonesia
Assoc.Prof.Dr. Anupriya Jain - Manav Rachna International Institute of Research & Studies, India
Assoc.Prof.Dr. Anita G. Welch - Ball State University, USA
Assoc.Prof.Dr. Chen - Chung Liu - National Central University, Taiwan
Assoc.Prof.Dr. Cheng - Huang Yen - National Open University, Taiwan
Assoc.Prof.Dr. Ching - fan Chen - Tamkang University, Taiwan
Assoc.Prof.Dr. Ching Hui Alice Chen - Ming Chuan University, Taiwan
Assoc.Prof.Dr. Chiung - sui Chang - Tamkang University, Taiwan
Assoc.Prof.Dr. Danguole Rutkauskiene - Kauno Technology University, Lietvenia
Assoc.Prof.Dr. Eric Meng - National pingtung university, Taiwan
Assoc.Prof.Dr. Ezendu Ariwa - London Metropolitan University, U.K.
Assoc.Prof.Dr. Fahad N. AlFahad - King Saud University
Assoc.Prof.Dr. Gökhan Dağhan - Hacettepe University, Turkey
Assoc.Prof.Dr. Gurnam Kaur Sidhu - Universiti Teknologi MARA, Malaysia
Assoc.Prof.Dr. Hao - Chiang Lin - National University of Tainan, Taiwan
Assoc.Prof.Dr. Hsin - Chih Lin - National University of Tainan, Taiwan
Assoc.Prof.Dr. Huey - Ching Jih - National Hsinchu University of Education, Taiwan
Assoc.Prof.Dr. Huichen Zhao - School of Education, Henan University, China
Assoc.Prof.Dr. I - Wen Huang - National University of Tainan, Taiwan
Assoc.Prof.Dr. I Tsun Chiang - National Changhua University of Education, Taiwan
Assoc.Prof.Dr. Ian Sanders - University of the Witwatersrand, Johannesburg
Assoc.Prof.Dr. Jana Birova - Comenius University in Bratislava, Slovakia
Assoc.Prof.Dr. Jie - Chi Yang - National Central University, Taiwan
Assoc.Prof.Dr. John I-Tsun Chiang - National Changhua University of Education, Taiwan
Assoc.Prof.Dr. Ju - Ling Shih - National University of Taiwan, Taiwan
Assoc.Prof.Dr. Koong Lin - National University of Tainan, Taiwan
Assoc.Prof.Dr. Kuo - Chang Ting - Ming - HSIN University of Science and Technology, Taiwan
Assoc.Prof.Dr. Kuo - Liang Ou - National Hsinchu University of Education, Taiwan
Assoc.Prof.Dr. Lan Li - Bowling Green State University, USA
Assoc.Prof.Dr. Larysa M. Mytsyk - Gogol State University, Ukraine
Assoc.Prof.Dr. Laura Giraldi - Università degli studi di Firenze, Italy
Assoc.Prof.Dr. Li - An Ho - Tamkang University, Taiwan
Assoc.Prof.Dr. Li Yawan - China Open University, China
Assoc.Prof.Dr. Mike Joy - University of Warwick, UK
Assoc.Prof.Dr. Ming-Charng Jeng - National Pingtung University, Taiwan
Assoc.Prof.Dr. Norazah Mohd Suki - Universiti Malaysia Sabah, Malaysia
Assoc.Prof.Dr. Normaliza Abd Rahim - Universiti Putra Malaysia, Malaysia
Assoc.Prof.Dr. Noushad Husain - Maulana Azad National Urdu University, Hyderabad
Assoc.Prof.Dr. Omid Noroozi - Wageningen University and Research, The Netherlands

Assoc.Prof.Dr. Ping - Kuen Chen - National Defense University, Taiwan
Assoc.Prof.Dr. Popat S. Tambade - Prof. Ramkrishna More College, India
Assoc.Prof.Dr. Prakash Khanale - Dnyanopasak College, INDIA
Assoc.Prof.Dr. Pramela Krish - Universiti Kebangsaan Malaysia, Malaysia
Assoc.Prof.Dr. Tzu - Hua Wang - National Hsinchu University of Education, Taiwan
Assoc.Prof.Dr. Wu - Yuin Hwang - National Central University, Taiwan
Assoc.Prof.Dr. Ya-Ling Wu - National Pingtung University, Taiwan
Assoc.Prof.Dr. Yahya O Mohamed Elhadj - AL Imam Muhammad Ibn Saud University, Saudi Arabia
Assoc.Prof.Dr. Aaron L. Davenport - Grand View College, USA
Assoc.Prof.Dr. Ali Abdalrhman Al Zebidi - Al-Qunfudah University College, Saudi Arabia
Assoc.Prof.Dr. Andreja Istenic Starcic - University of Primorska, Slovenija
Assoc.Prof.Dr. Chiu - Pin Lin - National Hsinchu University of Education, Taiwan
Assoc.Prof.Dr. Chun - Ping Wu - Tamkang University, Taiwan
Assoc.Prof.Dr. Chun - Yi Shen - Tamkang University, Taiwan
Assoc.Prof.Dr. Chung-Yuan Hsu - National pingtung university, Taiwan
Assoc.Prof.Dr. Dhaifallah S. Alsuhaymi - Imam Abdulrahman bin Faisal University, Saudi Arabia
Assoc.Prof.Dr. Guan - Ze Liao - National Hsinchu University of Education, Taiwan
Assoc.Prof.Dr. Hsiang chin - hsiao - Shih - Chien University, Taiwan
Assoc.Prof.Dr. Huei - Tse Hou - National Taiwan University of Science and Technology, Taiwan
Assoc.Prof.Dr. Jagannath. K Dange - Kuvempu University, India
Assoc.Prof.Dr. K. B. Praveena - University of Mysore, India
Assoc.Prof.Dr. Kanvaria Vinod Kumar - University of Delhi, India
Assoc.Prof.Dr. Lotfi Salhi - University of Gafsa, Tunisia
Assoc.Prof.Dr. Marko Radovan - University of Ljubljana, Slovenia
Assoc.Prof.Dr. Min-Hsien Lee - National central university, Taiwan
Assoc.Prof.Dr. Mobina Beheshti - Boston College, USA
Assoc.Prof.Dr. Mohammad Akram Mohammad Al-Zu'bi - Jordan Al Balqa Applied University, Jordan
Assoc.Prof.Dr. Pamela Ewell - Central College of IOWA, USA
Assoc.Prof.Dr. Pei-Hsuan Hsieh - National Cheng Kung University, Taiwan
Assoc.Prof.Dr. Pey-Yan Liou - National Central University, Taiwan
Assoc.Prof.Dr. Phaik Kin, Cheah - Universiti Tunku Abdul Rahman, Kampar, Perak
Assoc.Prof.Dr. Ping - Yeh Tsai - Tamkang University, Taiwan
Assoc.Prof.Dr. S. Arulchelvan - Anna University, India
Assoc.Prof.Dr. Sunil Kumar - National Institute of Technology, India
Assoc.Prof.Dr. Tsung - Yen Chuang - National University of Taiwan, Taiwan
Assoc.Prof.Dr. Wong Kung Teck - Sultan Idris Education University, Malaysia
Assoc.Prof.Dr. Yu - Ju Lan - National Taipei University of Education, Taiwan
Assoc.Prof.Dr. Zerrin Ayvaz Reis - İstanbul Cerrahpaşa University, Turkey

Table of Contents

An Examination of the Views on the Technological Leadership of School Administrators Working in Primary Schools in the North Cyprus <i>Gamze DAG, Sonay DERİCİOĞLU</i>	1
Application of Strategies for Conflict Resolution for First-year Undergraduate Students in Yunnan Province, China <i>Yanyan FAN, Thosporn SANGSAWANG</i>	11
Arabic Learners' Perceptions of Google Docs-Mediated Small-Group Collaborative Writing <i>Maher Abdel ALKHATEEB</i>	25
Contrasting National Strategies for Digital Inclusion in Education: A Comparative Analysis of Mauritius and Singapore <i>Karolina Radyńska- CENKIER</i>	34
Core Quality Components in Contemporary Teacher Education Systems <i>Jafar JAFAROV</i>	45
Pre-Service Teachers' Beliefs About Classroom Management: The Mediating Role in the Relationship Between Perceptions of Teacher Education and Self-Efficacy in Inclusive Classroom Management <i>Yogaranee SAKTHIVEL</i>	59
Enhancing Vocational Graduate Employability through Mobile Application on Advanced Quantitative Modeling of Skills and Partnerships <i>Yang WANG, Thosporn SANGSAWANG</i>	92
Examination of University Students' Perceptions of Online Social Capital <i>Göñül ŞENER</i>	103
Exploring the Effectiveness of AI-Generative Tools in Improving Vocabulary and Engagement among Elementary School Students in Oman <i>Fatma AL NAABI, Maimoona AL ABRI</i>	114
Hong Kong Students' Perception of Providing Students with Digital Learning Materials Improves Learning Experience <i>Hon Keung YAU, Wai Keung CHIU, Yu Jin CHEAH</i>	127
The Development of Blended Teaching Using Learning Platform in College English Education Under the Influence of AI <i>Yan XINLI, Naruemon THEPNUAN</i>	144
The Unseen Observer: The Psychology of Silent Following in Social Media Culture <i>Ferhat ATIK</i>	152
Understanding How Generative AI Cultivates Self-Directed Learning Capabilities: A Perspective Based on Digital Technology Evolution <i>Guo SHOUCHAO, Xu NINGJIE, Xu ZHENGUO</i>	157

Acceptance of Artificial Intelligence Tools Among Undergraduates: An Application of the
Technology Acceptance Model
Edwin Osmil COREAS-FLORES

170

An Examination of the Views on the Technological Leadership of School Administrators Working in Primary Schools in the North Cyprus

Gamze DAĞ¹, Sonay DERİCİOĞLU²

¹*University of Mediterranean Karpasia, Department of Management and Supervision of Educational Institutions.*

gamzedagcy@gmail.com

ORCID: 0009-0005-2788-9860

²*Atatürk Teacher Training Academy, Nicosia, North Cyprus, Turkey.*

sonay.dericioglu@aoa.edu.tr

ORCID: 0009-0008-9199-3031

ABSTRACT

The purpose of this study is to evaluate the views of school administrators working in primary schools affiliated with the Ministry of National Education of the Turkish Republic of Northern Cyprus regarding technological leadership. A qualitative research approach was employed in the study, and within this framework, a case study design was adopted. The study group consists of school administrators (principals and vice principals) working in public primary schools under the Primary Education Department of the Ministry of National Education of the TRNC. For this purpose, the researcher employed a semi-structured interview method and developed an interview form consisting of eight semi-structured questions. This interview form was used as the data collection tool. Content analysis was applied to analyze the qualitative data.

The findings indicate that school administrators largely associate the concept of technological leadership with competence in “using technology accurately and effectively” and “possessing sufficient technological knowledge.” In addition, perceptions of technological leadership behaviors emphasize openness to innovation, guiding teachers in the use of technology, and directing groups toward effective use of technology. The study further reveals that the majority of administrators consider the existing technological infrastructure and equipment inadequate, and that the current infrastructure and schools’ socioeconomic conditions directly affect administrators’ technological leadership roles.

Based on the study's results, it is recommended that practical technology training programs be organized for teachers and school administrators, that budget allocations be increased and infrastructural deficiencies addressed, that equal technological resources be provided to schools, and that the effective use of educational technologies in teaching be expanded.

Keywords: School administrator, technology, leadership, technological leadership

INTRODUCTION

In the modern era in which we live, technology is regarded as advanced and continues to develop daily across many fields. The rapid advancement of technology affects all institutions, including educational institutions. In this process of change and transformation, it is of great importance for educational organizations to be successful and to use their resources effectively (Gülmez, 2021).

The effective use of educational technologies in schools necessitates the education of individuals equipped with the competencies required by the information society. In this context, it is of great importance that not only teachers but also all stakeholders working in educational institutions—particularly school administrators—can adapt to this technological transformation (Özmen, 2022). School administrators are expected to closely follow developments in the field of technology and to integrate innovations into teaching and learning processes in the most appropriate manner. This integrated process, which requires planning and integrating technology use in parallel with changes in educational environments arising from the continuous development of technology, as well as providing the necessary infrastructure, professional development, and support services for educational components, brings the importance of technological leadership in education to the forefront (Anderson, 2005).

School administrators should enhance the quality of instructional processes by ensuring the effective and efficient use of educational technologies; at the same time, they should assume a guiding role in developing the knowledge and skills of teachers and other educational staff in this field (Başaran, 2000). In this context, the technological leadership demonstrated by school administrators emerges as a decisive factor in enabling educational staff to develop their technological competencies and to adapt to processes of change.

According to Durak (2022), an individual who can be described as a technological leader is expected to use technology effectively and to motivate individuals working within the organization to engage in the use of technology. Within this framework, it is of great importance that school administrators possess the competence to use educational technologies effectively and have developed basic literacy skills related to information technologies. Individuals in administrative positions are expected to create environments that enable students and educational staff to integrate technology efficiently into the educational process. Furthermore, monitoring technological innovations, adapting these developments in accordance with the structure of the school, and implementing them in practice should be considered among the technological leadership competencies that a school administrator is expected to possess.

The purpose of this study is to evaluate the views of school administrators working in primary schools affiliated with the Ministry of National Education (MoNE) of the Turkish Republic of Northern Cyprus (TRNC) regarding technological leadership. In this context, based on the main research question, the sub-objectives of the study can be listed as follows:

1. How do school administrators define the concept of leadership?
2. How do school administrators define the concept of technological leadership in the current century?
3. What are school administrators' views regarding their technological leadership self-efficacy in the institutions where they work?
4. What are school administrators' opinions about the quality of the existing technological infrastructure and technological equipment in their schools?
5. What behavioral characteristics related to technological leadership should school administrators possess?
6. How do school administrators think that the information technology infrastructure of schools affects their technological leadership competencies positively or negatively?
7. How do school administrators think that the economic level or environment of the schools in which they work affects their technological leadership competencies positively or negatively?
8. What are school administrators' recommendations for expanding the use of educational technologies at the primary education level in the country?

METHODOLOGY

Research Design

This study was designed in accordance with the qualitative research method. In qualitative research, the primary focus is on gaining an in-depth understanding of the phenomenon under investigation within its own context. The qualitative research approach emphasizes understanding different perspectives, conducting descriptive analyses, and interpreting the data obtained. The research process progresses in a natural flow, and the findings are interpreted by being associated with theoretical frameworks in order to reach conclusions (Balci, 2016).

In this study, the case study design, which is one of the qualitative research methods, was preferred. Case studies are regarded as one of the research methods used to describe the details influencing the formation of a phenomenon, to develop possible explanations related to the phenomenon, and to evaluate the relevant case (Büyüköztürk et al., 2023).

Study Group and Sampling

In qualitative research methods, the study group consists of individuals whom the researcher interviews or observes to collect data, and it is determined in accordance with the research questions and objectives. In qualitative research, the primary concern is to collect in-depth data from participants who are aligned with the research questions. Therefore, in qualitative studies, selecting participants who are relevant and appropriate to the research is considered more important than having a large number of participants (Yıldırım & Şimşek, 2021).

The study group of this research consists of a total of 45 school administrators (principals and vice principals) working in primary schools affiliated with the Ministry of National Education of the Turkish Republic of Northern Cyprus during the 2024–2025 academic year. In determining the participants, the maximum variation sampling method, which aims to include individuals with diverse characteristics in the study, was preferred. As stated by Yıldırım and Şimşek (2021), the main purpose of maximum variation sampling is to reflect the widest possible range of differences in the characteristics of individuals who may participate in the research. Accordingly, in the process of forming the study group, attention was paid to ensuring diversity in the sample by considering various demographic variables such as participants' years of experience, age range, and educational background.

Data Collection Tool

In this study, the interview technique was employed as a qualitative data collection method. As the data collection instrument, a semi-structured interview form developed by the researcher was used. The interview form, which

was developed based on a review of the relevant literature and expert opinions, consists of eight open-ended questions. The interview form was tested through pilot applications conducted with three school administrators.

In qualitative research, interview instruments are generally designed with a flexible structure and include open-ended questions that allow participants to express their thoughts in detail (Merriam, 2013). These questions are posed to interview participants in the same order, and participants are allowed to express their responses with the level of detail and scope they prefer (Yıldırım & Şimşek, 2021). In this study, a semi-structured interview form was prepared to examine the views of school administrators working in primary schools in the TRNC regarding technological leadership was used, and participants were provided with the opportunity to freely express their own experiences.

Data Collection Process

To conduct interviews with 45 school administrators working in the TRNC, written permission was obtained from the Primary Education Department of the Ministry of National Education of the TRNC (Appendix 1), and an application was submitted to the Ethics Committee of the Institute of Social Sciences at Akdeniz Karpaz University, where all required documents were duly provided.

The study group consists of principals and vice principals working in primary schools located in the districts of Nicosia, Famagusta, Kyrenia, Güzelyurt, İskale, and Lefke, which are affiliated with the Primary Education Department of the Ministry of National Education of the TRNC. During the research process, primary schools were visited, and interviews were conducted with the participants. Throughout the interviews, a semi-structured interview form consisting of questions prepared by the researcher for school administrators was used. The study was conducted after obtaining ethical approval from the Institute of Social Sciences at Akdeniz Karpaz University. The interviews commenced in the spring semester of the 2024–2025 academic year and were completed in May.

Data Analysis

In this study, a semi-structured interview form was used as the data collection tool, and the content analysis method was preferred for the analysis of the data obtained. Content analysis is an analytical technique that involves the process of coding data and interpreting the relationships among these codes. The main objective of this method is to identify explanatory concepts derived from the collected data and to reveal the relationships among these concepts. The analysis process consists of data coding, the formation of categories, the identification of themes, the organization of categories and themes, and the interpretation of the findings (Yıldırım & Şimşek, 2021). The information obtained from the analysis process may provide potential hypotheses and research areas for future studies, thereby offering new directions for scientific research. While the analysis results enable researchers to develop new ideas and approaches for addressing existing problems, they also contribute to the literature (Büyüköztürk, 2011).

To ensure confidentiality, the participating school administrators were assigned different pseudonyms. Codes such as (P1, P2, ...) were used for principals, and (VP1, VP2, VP3, ...) for vice principals. During the research process, responses to the interview questions were recorded in written form, and an in-depth analysis was conducted on these responses. In line with the main purpose of the study, the responses obtained from participants were grouped under specific themes. These themes were organized according to similarities and differences in participants' responses. Subsequently, the grouped responses were coded in accordance with the progression of the analysis. During the coding process, tables were prepared to facilitate a clearer understanding of the responses.

Validity and Reliability

Qualitative research is based on the researcher's objective and unbiased examination of the phenomenon under investigation. In this study, various strategies were employed to ensure validity and reliability throughout the qualitative data collection and analysis processes.

Kirk and Miller (1986) define *validity* as the researcher's ability to present the observed events and the collected data objectively. In order to ensure validity, the researcher employs various methods to verify the accuracy of the collected data and the resulting findings. Some of these methods include additional verification processes, such as obtaining feedback from participants or peers.

In qualitative research, it is acknowledged that realities may vary due to personal perceptions and environmental conditions. Therefore, repeating the same study with different groups or under different conditions does not always yield identical results. Reliability is a critical concept in terms of the robustness and replicability of a qualitative study. The consistency of the data collected by the researcher and the systematic conduct of the research are important factors that enhance reliability. While the methods used to ensure reliability may differ between

qualitative and quantitative research, in qualitative research, reliability is grounded in the researcher's stance toward neutrality and objectivity (Yıldırım & Şimşek, 2021).

Various methods can be employed to ensure reliability in qualitative research. The involvement of more than one researcher, as well as conducting data analysis at different times and through retrospective comparisons, contributes to enhancing reliability. In addition, consulting expert opinions during the data analysis process and conducting a thorough review of the literature while reporting the data support both the reliability and validity of the study.

Findings

Table 1. Demographic Characteristics of the Participants

Variable	Category	f (n)	%
Gender	Female	29	64.4
	Male	16	35.6
Position	Principal	24	53.3
	Vice Principal	21	46.7
Age	36–40 years	10	22.2
	41–45 years	10	22.2
	46 years and above	25	55.6
Educational Background	Graduate of Atatürk Teacher Academy/College	40	88.9
	Graduate of the Faculty of Education (Primary School Teaching)	2	4.4
	Graduate of the Faculty of Education (Special Education Teaching)	3	6.7
Undergraduate Degree	Primary School Teaching	38	84.4
	Preschool Teaching	4	8.9
	Special Education Teaching	3	6.7
Postgraduate Education	M.A. in Educational Administration and Supervision	30	66.7
	Ph.D. in Educational Administration, Supervision, and Planning	3	6.7
Years of Administrative Experience	0–5 years	15	33.3
	6–10 years	13	28.9
	11–15 years	5	11.1

An examination of Table 1 indicates that 29 of the participants (64.4%) are female and 16 (35.6%) are male. It is observed that 24 participants (53.3%) serve as principals, while 21 participants (46.7%) serve as vice principals. In terms of age distribution, the majority of the participants are 46 years of age and above. Specifically, 10 participants (22.2%) are between the ages of 36 and 40, 10 participants (22.2%) are between the ages of 41 and 45, and 25 participants (55.6%) are aged 46 and above. When the educational background of the study group is examined, it is seen that 40 participants (88.9%) are graduates of the Atatürk Teacher Academy/College.

The number of participants who graduated from the Primary School Teaching departments of Faculties of Education was identified as two, while three participants were graduates of the Special Education Teaching department. Additionally, 38 participants reported having completed an undergraduate degree in Primary School Teaching, whereas four participants completed Preschool Teaching and three participants completed Special Education Teaching undergraduate programs.

A total of 45 school administrators participating in the study are employed in 21 different schools. The diversity of the schools in which the administrators work indicates that the study encompasses a wide range of schools and reflects the views of administrators from different regions and school contexts.

Table 2. Evaluation of School Administrators' Views on the Concept of Leadership

Themes	N	%
Open to innovation, understanding, fair, and trustworthy	6	13.3
Able to solve problems and demonstrate empathy	13	28.9
Visionary	8	17.8
Able to provide direction	20	44.4
Motivation-oriented	11	24.4
Ability to influence and inspire	15	33.3
Possessing team spirit and effective communication skills	16	35.6
Creating a collaborative environment and being familiar with the group	7	15.6
Taking initiative and serving as a role model	13	28.9
Eliciting respect and admiration; wise	9	20.0
Establishing and managing new structures	11	24.4
Possessing task management skills and a sense of responsibility	7	15.6
Self-confident and providing guidance	12	26.7

An examination of Table 2 reveals that school administrators' perceptions of the concept of leadership are multidimensional. The highest proportion of participants ($n = 20$) defined leadership as the ability to provide direction. This finding indicates a strong perception of leadership as a guiding and decision-making process. Following this, 35.6% of the participants stated that a leader should possess team spirit and effective communication skills, emphasizing that effective leadership gains meaning within a collective structure.

Table 3. Evaluation of School Administrators' Views on the Concept of Technological Leadership in the 21st Century

Themes	n	%
Encouraging the use of technology	10	22.2
Adapting to technological developments	6	13.3
Use of and proficiency in technology	8	17.8
A fundamental leadership type of the 21st century	6	13.3
Guiding technology use, following innovations, and self-development in technology	11	24.4
Supporting teachers through in-service training	7	15.6
Using technology accurately and effectively, possessing technological knowledge	17	37.8
Integration of technology into educational processes and administration	6	13.3
Utilizing technology in administration	7	15.6
Providing vision and infrastructure for the integration of education and technology	9	20.0
Lack of knowledge regarding the concept of technological leadership	7	15.6

According to Table 3, the participants evaluated the concept of technological leadership within a multidimensional framework. It is understood that the competency of "using technology accurately and effectively and possessing technological knowledge" was identified as the core element of technological leadership by the highest proportion of participants. In this context, technological leadership can be said to be associated with having technological knowledge and the ability to use technology consciously and purposefully. Moreover, by emphasizing dynamics such as guiding technology use, following innovations in the field, and continuous self-development, the participants defined technological leadership as a developmental process. Accordingly, technological leadership is perceived not as a concept limited to existing knowledge, but as a process that requires continuous improvement and guidance.

Table 4. Evaluation of School Administrators' Views on Technological Leadership Self-Efficacy

Themes	n	%
Guiding educational technologies	12	26.7
Using basic computer skills and smart devices	16	35.6
Using technology in administrative tasks and MoNE correspondence	23	51.1
Using technology in communication groups and the institution's social media sharing	7	15.6
Experiencing difficulty in keeping up with technological developments	9	20.0
Need for self-improvement in technology	6	13.3

According to Table 4, a large proportion of the participants stated that they can use technology effectively in administrative procedures and official correspondence, and it is also evident that perceptions of self-efficacy related to basic computer use and the use of smart devices are widespread. However, self-efficacy perceptions appear to be more limited in areas that require pedagogical leadership, such as guiding the use of educational technologies. Another group of participants reported using technology in social media and communication groups; however, this use can be considered relatively superficial. In addition, the presence of participants (20%) who reported difficulties in keeping up with technological developments, along with those who expressed a need for self-improvement, indicates that school administrators are aware of their competencies in this area but require support and training. This situation highlights the importance of systematic professional development programs for administrators in order to transform technological leadership competencies into institutional capacity.

Table 5. Evaluation of Administrative Perceptions Regarding the Adequacy of Schools' Technological Infrastructure and Equipment

Themes	n	%
Those who believe it is adequate	6	13.3
Those who believe it is not adequate	18	40.0
Lack of smart boards and internet connectivity problems	33	73.3
Insufficiency of technological infrastructure	16	35.6
Insufficient educational technologies	14	31.1
Availability of basic equipment	12	26.2
Appropriateness for the century we live in	9	20.0

According to Table 5, the majority of the participants stated that the technological infrastructure and equipment of the schools in which they work are not at the required level. In contrast, another group of participants considered the infrastructure to be adequate. A lack of smart boards and problems with internet connectivity were reported by a large proportion of the participants. In addition, insufficiencies in technological infrastructure and educational technologies were frequently expressed by the participants.

Table 6. Evaluation of School Administrators' Views on Technological Leadership Behavioral Characteristics

Themes	n	%
Open to innovations	21	46.7
Visionary	13	28.9
Guiding teachers and directing the group toward technology	20	44.4
Following technological developments	17	37.8
Willing to learn and conduct research	17	37.8
Using technology effectively	12	26.2
Effective communication and strong persuasive skills	4	8.9
Generating budgetary resources	4	8.9

As shown in Table 6, the participants stated that school administrators, as technological leaders, demonstrate behaviors such as being open to innovations, guiding teachers, and directing the group toward the use of

technology. While describing the behavioral characteristics of school administrators, the participants also emphasized behaviors such as following technological developments and being willing to learn and engage in research.

Table 7. Evaluation of School Administrators' Views on the Relationship Between Information Technology Infrastructure and Technological Leadership

Themes	n	%
Positive impact	18	40.0
No impact	13	28.9
Negative effects of technological infrastructure	4	8.9
Increasing administrators' motivation	3	6.7
Providing opportunities to demonstrate technological leadership roles	8	17.8

According to Table 7, a large proportion of the participants stated that information technology infrastructure contributes positively to school administrators' technological leadership. However, another group of participants reported that the existing infrastructure has no effect. Participants also expressed that the current infrastructure of schools provides administrators with opportunities to demonstrate their technological leadership roles. Overall, the findings indicate that information technology infrastructure has multidimensional effects on school administrators' technological leadership. Among the participants, the view that technological infrastructure contributes positively to administrators' ability to perform their leadership roles effectively was widely expressed. This suggests that infrastructure offers administrators opportunities to use technology and provide guidance, thereby strengthening technological leadership behaviors. On the other hand, some participants perceived information technology infrastructure as ineffective, indicating the presence of differing perceptions related to the quality of infrastructure or the ways in which it is utilized.

Table 8. Evaluation of School Administrators' Views on the Relationship Between Schools' Socioeconomic Status and Technological Leadership

Themes	n	%
Positive impact	18	40.0
Negative impact	14	31.1
No impact	13	28.9

An examination of Table 8 shows that participants offered differing evaluations regarding the relationship between a school's socioeconomic status and school administrators' technological leadership. Some of the school administrators participating in the study stated that socioeconomic status has a positive effect on technological leadership. Conversely, others indicated that a low socioeconomic level of the school negatively affects technological leadership. A considerable proportion of participants, however, reported that socioeconomic status does not affect technological leadership. Overall, these findings suggest that a school's socioeconomic status may influence school administrators' perceptions and practices of technological leadership in different ways.

Table 9. Evaluation of School Administrators' Recommendations for Expanding the Use of Educational Technologies in Teaching

Themes	n	%
Increasing budget allocation by the MoNE	17	37.8
Resolving internet connectivity problems	5	11.1
Organizing practical technology training for teachers and administrators	29	64.4
Providing equal technological equipment to schools by the MoNE	11	24.4
Addressing infrastructural deficiencies	14	31.1
Establishing cooperation with the private sector	2	4.4
Including a computer course in the primary school curriculum	2	4.4
Establishing an IT unit within schools	5	11.1
Creating an educational technology sharing platform by the MoNE	6	13.3

Themes	n	%
Enhancing teacher motivation	5	11.1

According to Table 9, school administrators put forward various recommendations aimed at promoting the more widespread and effective use of educational technologies in teaching. A large proportion of the participants considered the organization of practical technology training programs for teachers and administrators to be necessary, and this recommendation constituted the majority of the responses. When examining the views ranked second in frequency, participants emphasized increasing the budget allocated to schools by the Ministry of National Education and addressing infrastructural deficiencies. Overall, the findings indicate that administrators primarily prioritize the organization of practical technology training for teachers and administrators, perceiving this as a fundamental requirement for the effective use of educational technologies. In addition, the need for structural support, such as budget increases, the elimination of infrastructural deficiencies, and the provision of equal technological equipment to schools, is strongly emphasized. Furthermore, recommendations related to establishing IT units within schools and creating educational technology sharing platforms point to the importance of strengthening systematic support mechanisms through technological infrastructure and collaborative models.

DISCUSSION

The research findings indicate that school administrators working in the TRNC have multidimensional perceptions of the concept of leadership. It is observed that the majority of participants emphasized the ability to provide direction when defining leadership. This finding is consistent with Özden's (2006) definition of leadership as "the ability to influence followers and guide and direct them toward achieving a specific goal."

It is understood that school administrators in the 21st century regard the competency of "using technology accurately and effectively" as the core element of technological leadership. The findings obtained from this study are consistent with those reported in the literature. In his study, Can (2007) emphasized that a technology leader is an individual who uses technology correctly while mobilizing the capacities of employees. Similarly, Özmen (2022), in his study examining the technological leadership roles expected by teachers from school principals, concluded that the majority of participants emphasized the roles of effectively using technology and possessing technological knowledge.

On the other hand, it is observed that school administrators tend to evaluate their technological leadership self-efficacy positively, primarily due to their effective use of technology in administrative tasks. A large proportion of the participants stated that they can use technology effectively in administrative procedures and official correspondence, and that perceptions of self-efficacy related to basic computer use and smartphone use are also widespread. This finding is consistent with the results reported by Ölez and Kılıçoglu (2018). In their study, Ölez and Kılıçoglu (2018) indicated that school administrators generally use technology actively in correspondence with the relevant ministry of education. Participants also reported that they effectively utilize the internet and telephones for communication with authorities on behalf of their institutions. However, according to the study titled *Teachers' Perceptions of School Principals' Technological Leadership* conducted by Erden and Erden (2007) in the TRNC, it was concluded that school principals' technological leadership competencies were not perceived as high by teachers. This finding differs from the results of the present study.

According to the research findings, the majority of school administrators' perceptions of technological leadership behavioral characteristics are concentrated on being open to innovations, guiding teachers in the use of technology, and directing the group toward technology. This result is consistent with findings reported in the relevant literature. Yahşı (2020) defines the core components of effective technological leadership as knowing how to use technology to enhance learning processes, developing strategies to support teachers' technology integration, and establishing a technology team and support system within the institution to promote the sustainable use of technology.

Results and Conclusions

In this study, school administrators working in primary schools in the TRNC defined the concept of leadership primarily in terms of the ability to provide direction and guidance, while they largely explained the concept of technological leadership through the competency of "using technology accurately and effectively" and possessing technological knowledge. The findings also indicate that participants feel confident in using everyday technological tools at a basic level and that they tend to use technology mainly for administrative tasks and official correspondence.

It was concluded that the majority of school administrators consider the existing technological infrastructure and equipment to be inadequate. In particular, the limited number of smart boards and problems with internet connectivity emerged as key factors hindering the effective use of technology in educational processes.

With regard to school administrators' perceptions of technological leadership behaviors, characteristics such as being open to innovations, guiding teachers in the use of technology, and directing the group toward technology were found to be particularly prominent.

It is observed that information technology infrastructure in schools has multidimensional effects on school administrators' technological leadership. While a large proportion of participants stated that the existing technological infrastructure serves a supportive function for administrators' technological leadership roles, some administrators expressed the view that the information technology infrastructure is inadequate or ineffective.

Notable findings were also obtained regarding the impact of socioeconomic status on technological leadership. Some administrators stated that a school's high socioeconomic level positively supports technological leadership practices, noting that greater resources and opportunities provide advantages in adopting technology and pursuing innovative practices. In contrast, there are views indicating that in schools with a low socioeconomic level, technological leadership activities are constrained due to limited resources, infrastructural deficiencies, and insufficient support. Nevertheless, some participants argued that socioeconomic status is not a determining factor, suggesting that leadership attitudes and competencies can develop independently of context or be supported through alternative means.

The participants within the scope of the study primarily consider the organization of practical technology training programs for teachers and school administrators to be necessary. In addition, administrators emphasize the importance of structural support, including increasing budget allocations, addressing infrastructural deficiencies, and ensuring the provision of equal technological equipment to schools.

Recommendations

Practical Recommendations for Implementation

- It is recommended that regular, practical, and up-to-date technology training programs be organized for school administrators. These programs should aim to develop not only administrators' technical skills but also their competencies in the pedagogical and strategic use of technological tools.
- It is recommended that all schools be provided with technological infrastructure under equal conditions and in line with contemporary requirements, and that solutions be developed to address internet connectivity problems and the shortage of smart boards.
- It is recommended that school administrators support technology integration in both administrative and pedagogical contexts and serve as role models for teachers in the effective use of technology.
- In addition to providing hardware to enable school administrators to use technology effectively, it is recommended that technical support and consultancy services be offered in schools to ensure the efficient use of this infrastructure.
- In order to enhance school administrators' technological leadership roles, it is recommended that a comprehensive strategic plan be developed within the Ministry of National Education of the TRNC. This plan should include provisions for equity in technology use, continuous professional development, and infrastructural improvements, and should be supported by monitoring and evaluation mechanisms.

Recommendations for Future Research

- It is recommended that quantitative and mixed-methods studies be conducted to examine the relationship between school administrators' and teachers' technological leadership skills.
- Future studies may compare the technological leadership competencies of school administrators who have participated in in-service training programs on current technological developments and educational technologies with those who have not participated in such training.
- To evaluate the effects of technological leadership in educational settings from a broader perspective, it is recommended that similar studies be conducted with the participation of teachers and students.

REFERENCES

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. *Assessment in Education: principles, policy & practice*, 5(1), 7-74.

Anderson, R. E., & Dexter, S. (2005). School technology leadership: An empirical investigation of prevalence and effect. *Educational administration quarterly*, 41(1), 49-82.

Balcı, A. (2016). *Etkili Okul ve Okul Geliştirme Kuram, Uygulama ve Araştırma*. Ankara: Pegem A.

Başaran, İ. E. (2000). *Eğitim Yönetimi: Nitelikli Okul*. Ankara: Feryal Matbaası.

Büyüköztürk, Ş. (2011). *Sosyal Bilimler İçin Veri Analizi El Kitabı*. 13. Baskı. Ankara: Çantay Yayıncıları.

Can, N. (2007). Öğretmen liderliği becerileri ve bu becerilerin gerçekleştirilme düzeyi. *Sosyal Bilimler Enstitüsü Dergisi*, 22, 263–288.

Durak, D. (2022). *Okul yöneticilerinin teknoloji liderliği öz-yeterlikleri ve 21. yüzyıl öğreten becerileri* (Yayınlanmamış yüksek lisans tezi). Kırşehir Ahi Evran Üniversitesi, Sosyal Bilimler Enstitüsü.

Erden, H., & Erden, A. (2007). Teachers' perception in relation to principals' technology leadership: 5 primary school cases in the Turkish Republic of Northern Cyprus. 7th International Educational Technology (IETC) Conference.

Gülmez, Ç. (2021). *Öğretmen Algılarına Göre Okul Yöneticilerinin Teknolojik Liderlik Rolleri İle Öğretmenlerin Performans Düzeyleri Arasındaki İlişki* (Yayınlanmamış yüksek lisans tezi). Siirt Üniversitesi, Sosyal Bilimler Enstitüsü.

Kirk, J., & Miller, M. L. (1986). *Reliability and Validity in Qualitative Research* (Vol. 1). Sage.

Merriam, S. B. (2013). Nitel Araştırma: Desen ve Uygulama İçin Bir Rehber (3. Baskıdan Çeviri, Çeviri Editörü: S. Turan). Ankara: Nobel Yayın Dağıtım.

Ölez, D., & Kılıçoğlu, D. (2018). Okul yöneticilerinin teknoloji liderliği davranışlarının incelenmesi. *Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi*, (48), 575–601.

Özden, V. (2006). *Dönüşüm Mimarlığı: Okul Yönetimlerini Geliştirme Programı*. Ankara: İlköğretim Genel Müdürlüğü.

Özmen, L. A. (2022). *Okul Müdürlerinin Teknolojik Liderlik Davranışları: Uzaktan Eğitim Sürecinde Öğretmen Görüşlerine Dayalı Nitel Bir Çalışma* (Yayınlanmış yüksek lisans tezi). Fatih Sultan Mehmet Vakıf Üniversitesi, Lisansüstü Eğitim Enstitüsü.

Yahşı, Ö. (2020). Okul yöneticilerinin teknoloji liderliği özyeterliklerinin incelenmesi: İzmir örneği. *Akademik Platform Eğitim ve Değişim Dergisi*, 3(2), 232–250.

Yıldırım, A., & Şimşek, H. (2021). *Sosyal Bilimlerde Nitel Araştırma Yöntemleri*. (12. Genişletilmiş Baskı) Ankara: Seçkin Yayınevi.

Application of Strategies for Conflict Resolution for First-year Undergraduate Students in Yunnan Province, China

Yanyan FAN

*Learning Technology and Innovation Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
yanyan_f@mail.rmutt.ac.th, ORCID: 0009-0002-6533-3634*

Thosporn SANGSAWANG*(Corresponding author)

*Educational Technology and Communications Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
sthosporn@rmutt.ac.th, ORCID:0000-0002-7926-6949*

ABSTRACT

The objectives of this study were to 1) investigate the efficiency of an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, 2) compare students' academic performance before and after using the application, and 3) assess students' satisfaction with the application. The sample consisted of 30 an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, selected through purposive sampling. The research instruments included the conflict resolution application, a pretest, a post-test, and a student satisfaction questionnaire. The statistics used for analyzing the data were percentage, mean, standard deviation, and the t-test for the dependent sample. The research findings revealed that the application was effective in enhancing student learning, achieving an E1/E2 efficiency score of 81.40/81.23. Expert evaluations rated the content of the application as highly appropriate ($\bar{x} = 4.51$, $SD = 0.50$) and the media design as excellent ($\bar{x} = 4.78$, $SD = 0.50$). Students' post-test scores ($\bar{x} = 16.27$, $SD = 1.48$) were significantly higher than their pre-test scores ($\bar{x} = 8.80$, $SD = 2.33$), with a t-value of 20.68 at the .05 level of significance. Furthermore, student satisfaction with the application was high, with a mean score of 4.51.

Keywords: conflict resolution strategies, educational application, undergraduate students

INTRODUCTION

The pursuit of developing and promoting an academic environment conducive to reducing social conflict the inevitable conflict of social interaction requires consideration of individual identities from diverse backgrounds, values, and perspectives. Adapting to social harmony, human development, and the creation of conflict-reduction environments and strategies in higher education aim to enhance students' crucial interpersonal skills, including communication, empathy, negotiation, and problem-solving. These skills not only foster harmony in the classroom but also prepare students for future professional and social environments. Teamwork and collaboration among students are essential. Conflict is a vital and unavoidable part of human interaction, especially in educational environments where diverse opinions, academic needs, and interpersonal dynamics converge. Undergraduate students in Yunnan Province, China, face various forms of conflict, such as peer discord, group project disputes, cultural misunderstandings, and confrontations between professors and students. If left unmanaged, these conflicts can negatively impact academic achievement, mental health, and university harmony. Research on the impact of the learning environment on academic achievement at Guangdong Provincial University of Technology highlights the importance of a friendly, inclusive, and stimulating learning environment that fosters student engagement, motivation, and academic success. This research analyzed the components of a constructive learning environment, namely student unity, support, participation, collaboration, and equality. Descriptive, comparative, and correlational research methods were used to collect data from 407 students respondents. The findings indicated that age significantly impacted perceptions of student unity; gender and curriculum had no significant impact on perceptions of support, participation, collaboration, and equality. Suggestions for improvement included increasing faculty awareness and training, promoting collaborative learning, and providing ongoing support and opportunities for participation. Continuous improvement and revision are recommended to meet the diverse needs of students and promote academic and personal development (Su, C., 2024).

The integration of artificial intelligence (AI), the use of games, interactive role-playing, and peer mediation can assist undergraduate students in Yunnan Province in developing practical problem-solving skills aligned with cultural needs. Digital technology, particularly mobile applications, is used to enhance learning and skill development. However, digital tools specifically developed to teach students about conflict resolution are limited. The integration of games on language learning outcomes among Chinese students, while exploring the impact on

learner motivation, the effectiveness of games as a motivational tool, and digital literacy as a key component, provides deeper insights into individual learning experiences (Shen, Z., Lai, M., & Wang, F., 2024).

Yunnan Province, China is characterized by ethnic diversity, with over 25 ethnic groups. These groups exhibit differences in language, communication styles, and cultural values, leading to misunderstandings and inappropriate conflict resolution. Chinese students often avoid direct confrontation, posing unique challenges in conflict resolution (Hofstede, 2010). Traditional conflict resolution strategies are less effective due to Yunnan's ethnic diversity, which necessitates resolving conflicts arising from differences in language, communication styles, and cultural values. Traditional conflict resolution methods may be ineffective due to these differences. The general tendency of Chinese students to avoid direct confrontation presents challenges and mechanisms for conflict resolution. Customary law and state mediation are prevalent in areas such as Lanping County, where the Yi ethnic group relies on customary law for conflict resolution. The lack of coordination between the state and civil society contributes to disagreements and conflicts (Qi, Y., 2023). Natural multiculturalism in northwestern Yunnan is maintained through intermarriage, linguistic interaction, and shared rituals. This natural form of multiculturalism fosters empathy and unity. From the typical nation-state community model (Wu, K., 2024), cultural and educational integration and cultural and educational diversity present challenges. Integrating ethnic minorities into the broader Chinese culture poses educational challenges. Multicultural communication skills are needed to overcome cultural and communication barriers in schools, impacting the academic performance of ethnic minority students.

8. Preserving Cultural Identity: Rapid urbanization and globalization have intensified cultural conflicts in Yunnan. Efforts to preserve cultural diversity depend on respecting cultural identity and improving cultural integration.

3. Economic and Social Dynamics: Tourism and Economic Resilience: Ethnic tourism in Yunnan, driven by small family businesses, highlights the resilience and adaptability of these communities. Cultural Governance: Yunnan's cultural governance is crucial for social stability and development. The province's unique cultural characteristics, influenced by its geographical location and ethnic diversity, require appropriate management strategies to effectively manage cultural resources. Yunnan's ethnic diversity necessitates constructive conflict resolution strategies, respect for cultural differences, and the natural utilization of cultural diversity. Efforts in educational and cultural integration must consider the specific needs of ethnic minorities. Economic resilience in tourism and effective cultural governance are essential for maintaining social harmony and promoting sustainable development in the region.

Conflict resolution and compromise are essential skills, but at the undergraduate level, students in Yunnan Province lack systematic training and readily available resources to effectively manage disputes. Several key factors contribute to this problem, including: inadequate conflict resolution education – most colleges in Yunnan do not offer formal conflict resolution courses in their undergraduate programs; students resort to trial-and-error approaches to problem-solving, resulting in increased tension instead of successful resolution; cultural barriers to direct conflict resolution – many students in China prefer indirect communication, avoiding direct confrontation even when challenges demand resolution, leading to lingering resentment, unresolved conflicts, and heightened tension among students; a lack of digital solutions for conflict resolution training – colleges are reliant on e-learning platforms or developing dedicated mobile or online applications designed to assist students in practicing and enhancing their conflict resolution abilities; current internet-based mediation services primarily address legal or organizational issues rather than academic and social problems; diverse student demographics and linguistic challenges – Yunnan's multilingual context hinders dispute resolution, resulting in miscommunication due to language differences; adaptive learning technologies are crucial in meeting the diverse needs of students; and unsuccessful mediation and peer support mechanisms. Student counseling and dispute resolution services face challenges due to a lack of awareness and bias regarding seeking help. Digital applications can provide a sensitive, user-friendly, and dynamic platform for students to engage in self-mediation and peer negotiation. The importance of conflict resolution is highlighted, and a conflict resolution application designed for undergraduate students in Yunnan will bridge the gap between theoretical understanding and practical application of conflict resolution. It will offer engaging and immersive teaching experiences using simulations, AI-powered mediation, and gamification, providing multilingual support to accommodate Yunnan's diverse ethnic student population. Furthermore, it will enhance students' emotional intelligence, communication skills, and negotiation skills, leading to improved academic and social interactions. Undergraduate students in Yunnan often struggle with conflict management due to insufficient resources and information, resulting in miscommunication, stress, and deteriorating relationships. Therefore, developing a conflict resolution application is crucial in equipping students with the necessary skills to resolve problems constructively and foster a more harmonious and collaborative academic environment.

Given the importance of the aforementioned problems, the researchers conducted research on the application of conflict resolution strategies for first-year undergraduate students in Yunnan Province, China. They designed learning activities on conflict reduction strategies through a digital conflict resolution application game. The

content covered included: enhancing conflict resolution abilities; systematic guidance on negotiation, mediation, and problem-solving strategies; reducing academic and social stress; assisting students in managing disputes; reducing anxiety through psychology; fostering positive university experiences; facilitating multicultural communication; supporting multilingualism and culturally relevant communication strategies for equality and teamwork; approaches to dispute resolution in the academic environment; improving collaboration and efficiency; access to ongoing learning and support; counseling to reduce prejudice and promote compromise and mediation; enhancing emotional intelligence and communication skills; helping students develop self-awareness, empathy, and the ability to listen to others; preparing students for future careers; and developing negotiation and leadership skills. Therefore, conflict resolution is crucial for undergraduate students in Yunnan Province, China, yet there is a lack of systematic training and resources to help students develop these skills. The digital conflict resolution application aims to address this problem by offering interactive, user-friendly, and culturally relevant solutions. This application helps develop students' conflict resolution abilities. To foster a creative learning environment and enhance emotional intelligence; to strengthen classroom and group dynamics; to strengthen student support services; to help overcome cultural and linguistic barriers; to promote intercultural understanding; and to prepare students for work in professional environments, thereby promoting a more peaceful society and improving mental health and quality of life; and to foster self-development, academic achievement, and professional readiness for undergraduate students in Yunnan Province.

LITERATURE REVIEW

Relevant literature related to this research includes: the effectiveness of applying conflict resolution strategies; learning through the application of conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China; and the use of applying conflict resolution strategies.

Conflict Resolution Applications. This focuses on the theoretical framework, incorporating interdisciplinary theories from psychology, education, communication, and instructional technology, focusing on the design, implementation, and evaluation of a digital application aimed at enhancing students' conflict resolution abilities within academic and social contexts. Conflict Resolution of theoretical framework, shush as 1) Social constructivist theory emphasizes that knowledge and skills are constructed through social interaction and shared experiences in the context of conflict resolution. This theory highlights the importance of dialogue, collaboration, and reflection in resolving interpersonal conflicts. First-year undergraduate students transitioning from high school to university life often face diverse perspectives, cultural differences, and new social environments. Applying conflict resolution based on social constructivist theory fosters peer interaction through simulations, discussion-stimulating questions, and collaborative problem-solving tasks, enabling learners to collaboratively build understanding and develop practical conflict management skills, 2) Conflict resolution theory views conflict as a natural and potentially creative process. Effective management involves understanding the origins of conflict, recognizing different conflict types, and using appropriate strategies such as negotiation, mediation, compromise, cooperation, and avoidance. Integrating conflict reduction guidance for students and practicing strategy selection through life experiences at the Yunnan University, includes group work, dormitory life, and intercultural communication, 3) Social Learning Theory: Individuals learn behaviors and attitudes through observation, imitation, and reinforcement. Effective conflict-solving behaviors demonstrated in the application, such as respectful communication, emotional control, and empathetic listening, can influence responses to conflict. The application, role-playing, video demonstrations, and feedback mechanisms allow students to learn from demonstrated behaviors and receive reinforcement for making constructive conflict resolution choices, 4) Emotional Intelligence Theory: Emotional intelligence is the ability to recognize, understand, and effectively manage emotions in oneself and others amidst emotional conflict situations arising from stress, academic pressure, and adaptive challenges. Integrating emotional intelligence into the application framework will support students in developing self-awareness, empathy, emotional regulation, and social skills, enabling them to manage emotions constructively during conflicts, 5) Experiential learning, reflection, idea generation, and active experimentation: Presenting interactive conflict scenarios that reflect real-life situations in a university environment; engaging in decision-making processes; reflecting on outcomes; enhancing the transfer of conflict resolution skills from digital environments to real-world interactions, 6) Effective use of technology and adoption, through the design of effective applications and learning outcomes for conflict resolution within cultural contexts, ethnic diversity, and multicultural interaction (Vinokur, E., Yomtovian, A., Marom, M., Itzchakov, G., & Baron, L., 2024).

Available Digital Conflict Resolution Tools and Application of Conflict Resolution Strategies in Diverse Environments, Cultural Differences, Values, and Perspectives: Understanding how to manage and resolve conflict constructively, academic success, and positive social relationships are crucial. Technological advancements provide numerous digital tools to support conflict resolution by promoting communication skills, empathy, and negotiation. The use of software applications and platforms designed to foster understanding and

reduce individual differences, communication and mediation platforms, allows for expressing opinions, listening to others, and achieving mutual understanding. Mediation software facilitates step-by-step conflict resolution with pre-defined frameworks that promote empathy and fairness. In modern society, conflicts arising from inappropriate emotional expression highlight the fundamental importance of mediation technology in conflict resolution. The use of reasoning to clarify the role and responsibilities of mediators in developing conflict resolution skills ensures that parties are prepared to communicate objectively, reason effectively, and make sound decisions in resolving conflicts (Hnatyshyn, Y., Klishch, H., & Sas, L., 2024).

Components of the Online Mediation Platform, this digital system is designed to facilitate conflict resolution through communication, negotiation, and systematic decision-making, helping students effectively reduce dispute resolution. For first-year undergraduate students, the online mediation platform is designed to provide an accessible, flexible, and supportive environment for learning and applying conflict resolution strategies. Key components of the online mediation platform include: 1) Registration channels using student ID or verified email addresses. User profiles can include basic demographic information, role identification e.g., student, mediator, instructor, privacy settings, secure login and authentication, role-based access control, privacy protection, and data confidentiality. 2) Conflict reporting module allows users to formally report or describe conflict situations. Users can enter relevant details such as the nature of the dispute, the parties involved, duration, and desired outcome. 3) Effective communication and discussion tools for mediation. These tools support respectful and constructive dialogue among participants, including asynchronous messaging, discussion boards, private messaging and synchronous communication, chat or video conferencing. 4) Message control and conversation tracking; the message board provides guidance on mediation steps and processes, outlining procedures for identifying problems, sharing perspectives, generating alternatives, and reaching an agreement. An effective online mediation platform integrates secure user management, a structured mediation process through communication tools, and reflective learning elements. Such a platform will support constructive conflict management and skill development, particularly for first-year undergraduate students adjusting to a new academic and social environment. This study examines the modeling of conflict resolution capabilities within the context of the digital transformation of educational processes. Conflict resolution abilities impact effective collaboration and the ability to resolve complex interpersonal relationships. The study analyzes the conflict resolution capabilities of future leaders under digital conditions to achieve the objectives of analysis, synthesis, summarization, systematization, and comparison. This reveals key aspects and defines fundamental concepts of the studied issues. The model comprises knowledge, operational, and reflective components. The conflict resolution process includes the following steps: assessing foundational knowledge and skills; developing conflict resolution capabilities; identifying online resources for conflict resolution capacity building and providing technological and methodological support for effective use; planning and controlling the implementation of the conflict resolution capacity development process; and planning and managing knowledge, communication, and professional learning processes by applying digital technology for successful conflict resolution capacity development (Алькема, В., & Акініна, Н., 2025).

METHODOLOGY

This research studies the effectiveness of applying conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, through quantitative data collection and analysis. The researcher followed a research methodology consisting of the following components. This research uses a quantitative experimental design, collecting quantitative data using a test. The researcher employed a pre- and post-test design with a single group. The design diagram is detailed as follows: Group O₁ x O₂ (O₁ = pre-test score measurement, x = application of conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, to improve academic achievement, O₂ = post-test score measurement).

Population and sample: The population of this research consists of 500 an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, in the 2025 academic year. The sample consists of 30 an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, in the 2025 academic year. They were selected using purposive sampling because they are students of the researcher's advisor.

Research Instrument; Instruments for an Application on strategies for conflict resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China. 1) Investigate the efficiency of an Application on strategies for conflict resolution, 2) Compare an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China students' achievements before and after learning through Pretest and Posttest students' achievements before and after learning through digital learning according to an Application on strategies for conflict resolution, 3) Examine an application based

on conflict resolution strategies for first- year undergraduate students in Yunnan Province, China students' satisfaction with of using the satisfaction questionnaire examines students' satisfaction with using an Application on strategies for conflict resolution.

Procedure; Operational Procedure 1) Study the effectiveness of applying conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, to improve academic achievement of an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China. The students 'considering the $E1/E2 = 80/80$ value (Chaiyong Brahmawong, 2015). (E1) is the percentage of the average score or the average of all scores students received from activities or homework such as exercises, practice, projects, and formative assessments. (E2) is the percentage of the average score or the average of all scores students received from post-tests, final exams, and evaluations. The effectiveness of applying conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China. The students to improve student academic achievement was evaluated by 3 content experts and 3 media experts. The quality of the application's content regarding conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China students, to improve student academic achievement was evaluated according to the perceptions of content experts who work in the field of conflict resolution strategy planning for students. Media professionals working in conflict resolution strategy planning, Computer technology and education, or related fields were asked to evaluate the appropriateness of the content used in the application on conflict resolution strategies for students. The researcher followed these steps; *First Step*; the evaluation in this research was developed in line with the study's hypothesis. Therefore, the questionnaire was developed based on the two theories used in this study. The study showed that the use of an application on conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, improves the academic achievement of first-year undergraduate students in Yunnan Province, China. The questionnaire had two main parts. *Part 1*; the first part aimed to measure expert opinions on the use of technology, specifically the application on conflict resolution strategies for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, to improve academic achievement in Yunnan Province, China. This part was a closed questionnaire using a five (5) point Likert scale. Participants were asked to rate their agreement with each statement on a scale of 1-5. The interpretation of each numerical value is detailed below.

Table1: Range of mean and verbal interpretation

Range Value	Verbal Interpretation
4.50-5.00	Excellent
3.50-4.49	Good
2.50-3.49	Average
1.50-2.49	Poor
1.00-1.49	Very Poor

An open-ended questionnaire was used to ask participants to provide comments and feedback on the application of conflict resolution strategies for an application based on conflict resolution strategies for first- year undergraduate students in Yunnan Province, China, in teaching planning. *Second Step*; Three measurement and evaluation experts with expertise in education or measurement and evaluation were asked to assess the language of the questionnaire prior to evaluation. This data was used to calculate the Objective-Relevant Conformity Index (IOC). The evaluation experts assessed the content quality of the Objective-Relevant Conformity Index (IOC) and found it to be 0.93. The evaluation results are detailed below. Subsequently, the evaluation was reviewed by content experts for further evaluation. Measurement and evaluation experts assessed the outcomes as measured by the Objective-Relevant Conformity Index (IOC) and found it to be 0.93. Later, media experts conducted an evaluation to facilitate further evaluation. Therefore, a cumulative average score of the Objective-Relevant Conformity Index (IOC Index) exceeding 0.5 is considered acceptable. Objective-relevant conformity was evaluated using the following criteria, as shown in Table 2.

Table 2: Value of item objective congruence index (IOC) and verbal interpretation

+1	item is considered congruent with the objectives.
0	item is considered neutral in terms of whether it was congruent with the objectives.
-1	items are considered not congruent with the objectives.

The total mean score of the Item-Objective Congruence (IOC) Index is supposed to be higher than 0.5 for acceptable data. *Third Step*; The experts will use the assessment of content quality aspects of Application on Strategies for Conflict Resolution for an application based on conflict resolution strategies for first- year undergraduate students in Yunnan Province, China; to enhance learning achievement of an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China for content experts and the assessment of media quality aspects of Application on Strategies for Conflict Resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China a teaching for media experts.

The achievement assessment (Pretest and Posttest); a pretest and posttest shared the same items. Both contained 40 questions related to Chinese reading that they had learned in class: 20 items contained Chinese reading taught using an application on strategies for conflict resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, and the other 20 items contained Chinese reading taught using a traditional teaching Approach. The students were assigned to complete the Pretest before learning Chinese through an application on strategies for conflict resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China and then take the posttest after learning Chinese in this approach. The researcher went through the following steps: *First Step*; The researcher selected the test types. Multiple-choice tests were chosen to use in the study, *Second Step*; The second section of the questionnaire has been developed to measure students' academic Achievement in an application on strategies for conflict resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, *Third Step*; Three measurement and evaluation experts who work in the field of measurement and evaluation or education were asked to check the congruence between objectives and items in the test. The data obtained were used to calculate the Item Objective Congruence Index (IOC). The evaluation criteria were used for checking the congruence between objectives and items of the test as follows the value of item objective congruence index (IOC) and verbal interpretation of achievement assessment. The total mean score of the Item-Objective Congruence (IOC) Index is supposed to be higher than 0.5 for acceptable data, *Fourth Step*: both the pretest and posttest were administered to 30 first-year undergraduate students in Yunnan Province, China majors who had an Application on Strategies for Conflict Resolution subjects and were enrolled at an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China but were not part of the study sample. After the tests have been administered, they are used to determine the difficulty index, discrimination index, and reliability index of the achievement test. It was found that the difficulty index should be between 0.2 and 0.8, the discriminant index should be 0.2 or higher, and reliability should be 0.8 or higher, using Kuder-Richardson's K-R20 formula, *Fifth Step*; the pretest and posttest are used with participants to explore their vocabulary knowledge before and after learning Chinese through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China.

The questionnaire on students' satisfaction with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The questionnaire was used to gather Application on Strategies for Conflict Resolution for an application based on conflict resolution strategies for first- year undergraduate students in Yunnan Province, China. The researcher took the following steps. *First Step*; the questionnaire in this study has been developed to fit the study hypothesis. Consequently, it was developed based on both theories that have been utilized in this study. The study demonstrates that utilizing application on strategies for conflict resolution for an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, as outlined in the enhances learning achievement in the teaching of Career Development and Career Planning subjects at Yunnan Province, China. The questionnaire has two main sections, each with its own aim. *Part 1*: The first section aims to measure students' satisfaction with online learning platforms. This part was a close-end questionnaire that was based on the five (5) point Likert-type scales. The participants were asked to rate their degree of agreement with each statement on a scale of 1-5. The interpretation of each Number is described as follows (5 meaning Strongly agree; 4 meaning Agree; 3 meaning Undecided; 2 meaning Disagree; 1 meaning Strongly disagree).

Table 3: Range of mean and verbal interpretation

Range Value	Verbal Interpretation
4.50-5.00	Excellent
3.50-4.49	Good
2.50-3.49	Average
1.50-2.49	Poor
1.00-1.49	Very Poor

Part 2: This part was an open-ended questionnaire. The participants were asked to express their opinions and suggestions regarding learning through strategies for conflict resolution planning, in the context of Chinese subject teaching, in terms of achievements and satisfaction. *Second Step;* Before administering the questionnaire, three measurement and evaluation experts working in the field of measurement and evaluation or education were asked to review the appropriateness of the Chinese subject teaching used in the questionnaire. The data obtained were used to calculate the Item Objective Congruence index (IOC). The evaluation criteria were used for checking the congruence between objectives and items of the test as follows value of item objective congruence index (IOC) and verbal interpretation of questionnaire on teacher's satisfaction. The total mean score of the Item-Objective Congruence (IOC) Index is supposed to be higher than 0.5 for acceptable data. *Third Step;* The participants will use the questionnaire to explore their satisfaction with learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China, as in the questionnaires were applied to first-year undergraduate students in Yunnan Province, China.

Data collection; 1) Introduce students to an application based on conflict resolution strategies for first- year undergraduate students in Yunnan Province, China to enhance learning achievement at Yunnan Province, China, 2) Administer the teacher's Pretest to receive the score, 3) Conduct learning activities with students by utilizing lessons through an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China, following in Strategies for Conflict Resolution Planning subject teaching. 4) Administer a post-test to students after they have studied an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China and analyze the scores using statistical methods.

Data and Statistical Analysis; The researcher conducted the data analysis using the following procedures. 1) Find the efficiency of an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China enhance the learning achievement of first- year undergraduate students in Yunnan Province, China, as indicated by $E_1/E_2 = 80/80$ (Chaiyong Brahmawong, 2015). (E_1) is the percentage of the average or means of all scores the students earn from their activities or assignments, such as drills, exercises, project work, etc., or other types of formative evaluation. (E_2) is the percentage of the average or means of all scores the students earn from their posttest, final examinations, and other summative evaluations. 2) Compare the achievement test results before and after using an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China to enhance the learning achievement of first- year undergraduate students in Yunnan Province, China, using a dependent t-test, and 3) Study the satisfaction of students in an application based on conflict resolution strategies for first-year undergraduate students in Yunnan Province, China to enhance the learning achievement of first-year undergraduate students in Yunnan Province, China, using mean and standard deviation. The 5-Level Likert Scale; 5 meaning Strongly Agree; 4 meaning Agree; 3 meaning Neutral; 2 meaning Disagree; 1 meaning Strongly Disagree.

Data Interpretation (Criteria); in research, the mean is often used to summarize the overall picture, using the following class interval formula (4.21 – 5.00: Highest level; 3.41 – 4.20: High level; 2.61 – 3.40: Medium level; 1.81 – 2.60: Low level; 1.00 – 1.80: Lowest level). The basic statistics in data analysis are the formula for calculating the arithmetic mean (\bar{x}) is:

$$\text{The formula (1)} \quad \bar{x} = \frac{\sum x}{N}$$

$$\begin{aligned} \text{Whereas} \quad \bar{x} &= \text{Average or Arithmetic Mean} \\ \sum x &= \text{Sum of all score results} \\ N &= \text{Number of students} \end{aligned}$$

The formula for calculating the standard derivation (SD.) is:

$$\text{The formula (2)} \quad SD. = \sqrt{\frac{\sum(x-\bar{x})^2}{N}}$$

$$\begin{aligned} \text{Where} \quad SD. &= \text{Standard derivation} \\ N &= \text{Number of students} \\ \bar{x} &= \text{Mean value} \\ x &= \text{Teachers' score} \end{aligned}$$

The formula used to determine the quality of the instruments was: In finding content validity of the achievement test, we conducted the IOC formula (Item Objectives Congruence) by following the formula below:

The formula (3)	$IOC = \frac{\sum R}{N}$
Whereas	IOC = Index of correspondence between the test and the objective
	$\sum R$ = Sum of individual expert's value
	R = Expert's rating
	N = Number of experts

The formula used in finding the difficulty index of the achievement test were

The formula (4)

Whereas	P	=	difficulty level
	R_H	=	the Number of people who chose the highest option rate
	R_L	=	the Number of people who chose the lowest option rate
	N_H	=	the total Number of people in the high group
	N_L	=	the total Number of people in the low group

Table 5: Range of difficulty index and verbal interpretation

Difficulty Index	Verbal Interpretation
0.00-0.20	Very Difficult
0.21-0.40	Difficult
0.41-0.60	Average / Moderately Difficult
0.61-0.80	Easy
0.81-1.00	Very Easy

The formula for calculating the item discrimination of the achievement test is:

The formula (5)	$r = \frac{R_H - R_L}{N_H \text{ or } N_L}$
Whereas	r = Discrimination index
	R_H = Number of correct responses in the high group
	R_L = Number of correct responses in the low group
	N_H = Total Number of students in the high group
	N_L = Total Number of students in the low group

Table 6: Range of discrimination index and verbal interpretation

Discrimination Index	Verbal Interpretation
0.40 and above	Very Discriminating / Very Good Item
0.30 to 0.39	Discriminating / Good Item
0.20 to 0.29	Moderately Discriminating Item
0.10 to 0.19	Not Discriminating / Marginal Item
Below 0.10	Poor / Questionable Item

The formula for calculating the reliability of the achievement test K-R#20 by Kuder-Richardson is:

The formula (6)

Whereas	rtt	=	$rtt = \frac{k}{k-1} \left[1 - \frac{\sum pq}{s^2} \right]$
	k	=	Reliability Index
	p	=	Number of test items
	q	=	The proportion of the correct answer
	s^2	=	The proportion of the incorrect answer
			The variation of the entire test

The formula for calculating the variability of the achievement test is:

The formula (7)
$$S2 = \frac{n \sum fx^2 - (\sum fx^2)}{n(n-1)}$$

Whereas $S2$ = Variance
 n = Number of students
 x = Achievement test score
 f = Data of frequency

The formula used to verify the hypothesis was: The formula used in analyzing the differences in achievement scores using the dependent t-test was:

The formula (8)
$$t = \frac{\sum D}{\sqrt{\frac{n \sum D^2 - (\sum D)^2}{n-1}}}$$

Whereas $\sum D$ = Sum of variance score of achievement test
 $\sum D^2$ = Sum of different squares of achievement test scores
 $(\sum D)^2$ = Sum of variance score of the square test
 n = Number of students
 D = Difference between pretest and posttest scores

RESEARCH RESULT

Table 7: The report on the efficiency of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China.

Items	score	score	Standard	Percentage	E1/E2
Ongoing	100	85.10	80	81.40	82.40/81.33
Posttest	20	14.22	80	81.23	

From Table 1, The study found that the average mean score of ongoing assessments was 82.40, while the mean score of posttests was 81.23. These results suggest a significant improvement in learning outcomes through implementing an Application on Strategies for Conflict Resolution for first- year undergraduate students in Yunnan Province, China. The study focused on an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The findings indicate that the efficiency ratio of E1 to E2 was determined to be 81.40 to 81.23. In summary, this study focuses on developing an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The program adheres to the standard criterion of 80/80 as established.

Table 8: The evaluation report of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China from three content experts.

Evaluation Items	\bar{x}	SD.	Result Interpretation
1. Content on Strategies for Conflict Resolution learning objective consistency.	5	.00	Excellent
2. Content on Strategies for Conflict Resolution is intriguing.	4.5	.00	Excellent
3. Content on Strategies for Conflict Resolution and activities are learner-friendly.	4.67	.58	Excellent
4. Content on Strategies for Conflict Resolution is appropriate for each activity.	4.55	.58	Excellent
5. Content on Strategies for Conflict Resolution sorting is appropriate.	4.38	.58	Excellent
6. Content on Strategies for Conflict Resolution accuracy.	5.00	.00	Excellent
7. Content reading on Strategies for Conflict Resolution is appropriate for learners.	5.00	.00	Excellent
8. Activities are consistent with the content on Strategies for Conflict Resolution.	5.00	.00	Excellent
9. A presenting approach engages students for Strategies for Conflict Resolution.	4.67	.58	Excellent
10. The overview of the content on Strategies for Conflict Resolution is complete.	5.00	.00	Excellent

Total	4.78	.23	Excellent
-------	------	-----	-----------

Table 8 an application based on conflict resolution strategies for first-year undergraduate students in Yunnan, China from three content experts. The Evaluation comprises a set of ten items, which have been developed and approved by three subject matter experts. This section represents the content experts' opinions using a 5-point rating scale. Each criterion rating is specified as depicted in the table provided below. The experts examined the quality evaluation of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. Quality was consistently high ($\bar{x} = 4.78$, $SD = .23$). Findings indicate excellent content consistency, interest, accuracy, appropriate English subject teaching, consistent activities, and complete overview ($\bar{x} = 5.00$, $SD = .00$).

Table 9: Results of Evaluation of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China by three media experts.

Evaluation Items	\bar{x}	SD.	Result Interpretation
1. Learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.67	.58	Excellent
2. The sequence of activities and content is appropriate for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.53	.58	Good
3. Easy to use, uncomplicated for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.85	.58	Excellent
4. The images are consistent with the content appropriate for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.42	.58	Good
5. The images convey the meaning for . The images are consistent with the content adorate for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.33	.58	Good
6. The activities are appropriate for first-year undergraduate students.	4.64	.58	Good
7. Interesting content an Application on Strategies for Conflict Resolution.	4.00	.00	Good
8. Interest in Learning for first-year undergraduate students.	4.33	.58	Good
9. Makes it possible to understand the content more for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.33	.58	Good
10. The details are clear and easy to understand for first-year undergraduate students.	4.85	.58	Excellent
Total	4.50	.58	Good

Table 9: an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The 10-item evaluation form is from three media experts. This section assesses media professionals' thoughts on a 5-point scale. The table below rates each criterion. Three media specialists analyzed the media quality assessment of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. Overall, quality was outstanding ($\bar{x} = 4.50$, $SD = .58$). According to an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China is straightforward to comprehend, utilize, and has precise details ($\bar{x} = 4.85$, $SD = .58$).

Table 10: Compare students' achievements before and after learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China

Items	n	\bar{x}	SD.	df	t-test	Sig. (2-tailed)
Pretest	30	8.80	2.33	29	20.86	.05
Posttest	30	16.27	1.48			

**p<.05

Table 10 presents the learning achievement of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The mean score of pretests was 8.80, and the standard deviation (SD.) score was 2.33. The result after using an Application on Strategies for Conflict Resolution for

first-year undergraduate students in Yunnan Province, China, which translated into a high posttest of 16.27 and standard deviation (SD.) of 14.8 and t-test analysis before and after the treatment of 20.86 which demonstrated a considerable difference was statistically significant at the .05 level.

Table 11: Examine students' satisfaction with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China

Evaluation Items	\bar{x}	SD.	Result Interpretation
1. The Function of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China	4.60	.50	Strongly Agree
2. Rich learning resources are available for . The images are consistent with the content adorate for an Application on Strategies for Conflict Resolution for first-year undergraduate students.	4.40	.51	Strongly Agree
3. Computer use benefits from computer application knowledge on Strategies for Conflict Resolution for first-year undergraduate students.	4.50	.51	Strongly Agree
4. Basic IT applications can collaborate and communicate on Strategies for Conflict Resolution for first-year undergraduate students.	4.43	.50	Agree
5. Basic computer application allows for immediate feedback and Evaluation.	4.50	.51	Strongly Agree
6. blended teaching online according to the Super Star Learning Pass model on Basic computer applications can get multimedia teaching tools.	4.53	.51	Strongly Agree
7. Teaching blended teaching online according to the Super Star Learning Pass model on Basic computer applications can have to learn management and tracking.	4.53	.51	Strongly Agree
8. according to an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China, blended teaching online can be an innovative teaching method.	4.67	.48	Strongly Agree
9. according to . The images are consistent with the content adorate for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China, blended online teaching can be intercultural teaching.	4.37	.51	Agree
10. blended teaching online, according to . The images are consistent with the content adorate for an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China can be rethought and improved.	4.57	.50	Strongly Agree
Total	4.51	.50	Strongly Agree

Table 11 shows the results of the Evaluation of students' satisfaction with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China by 30 students. The overall students' satisfaction was a strongly agreeing level ($\bar{x}=4.51$, SD. = .50). When considering each item, it was found that an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China was strongly agreeing level ($\bar{x}= 4.67$, SD. = .48) and. combined teaching online according to an Application on Strategies for Conflict Resolution was strongly agree level ($\bar{x}= 4.60$, SD. = .50), respectively.

CONCLUSION AND DISCUSSION

There are three primary objectives in the study of the effect of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The research instruments consisted of (1) investigating the efficiency of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China, (2) comparing students' achievements before and after learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China,

and (3) examine students' satisfaction with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The conclusion, discussion, and suggestion of the research are the discussion of the study on an application based on conflict an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China is as follows (1) Study the efficiency of using an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. (2) Results of evaluation efficiency of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The average mean score of the ongoing score was 81.40, and the mean score of posttests was 81.23, which indicated a substantial improvement upon an application based on conflict resolution strategies for first-year undergraduate students in Yunnan, China. The result revealed that the value of efficiency of E1/E2 was 81.40/81.23. To summarize, this an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China is developed according to the standard criteria 80/80 defined because there is a process for finding the effectiveness of lessons that are consistent with the research process that is accurate and clear. Results of Evaluation of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China by three content experts and three media experts. The results of the content quality assessment of We must meet all indices. The fifth stage is a pre- and post-test to assess vocabulary proficiency before and after an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. Based on the study hypothesis, three measurement and Evaluation specialists created and administered the questionnaire to evaluate teaching on Strategies for Conflict Resolution. Researchers assessed data alignment with aims using an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China evaluated by three content experts. The overall quality was excellent level ($\bar{x}=4.78$, SD. = .23). When considering each item, it was found that consistency between content and learning objectives, the content is interesting, content accuracy, the language used in the range is appropriate for the learners, activities are consistent with the content and the overview of the content is complete were excellent level ($\bar{x}= 5.00$, SD. = .00), respectively. The results of the media quality assessment of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China were evaluated by three media experts. The overall quality was excellent level ($\bar{x}=4.50$, SD. = .58). When considering each item, it was found that learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students teaching is easy to understand, easy to use, uncomplicated and the details are clear and easy to understand were excellent level ($\bar{x}= 4.85$, SD. = .58), respectively. This may be due to the quality assessment process of We must meet all indices. The fifth stage is a pretest and posttest to assess vocabulary proficiency before and after an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The study examined student satisfaction with technology integration in an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. and processes systematically through quality assessment from experts with actual specific There are the correct procedures knowledge.

Compare students 'achievements before and after learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. They presented the learning achievement of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The mean score of pretests was 8.80, and the standard deviation (SD.) score was 2.33. The result after using an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China translated into a high posttest of 16.27 and standard deviation (SD.) of 14.8 and t-test analysis before and after the treatment of 20.68, which demonstrated a considerable difference was statistically significant at the .05 level. This may be due to blended teaching online according to th an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China a that enable participants to learn at their own pace and help learning achievement goals. Study the satisfaction of teachers who use an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The results of the Evaluation of students' satisfaction questionnaire on learned with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China in China by 30 students. The overall students' satisfaction was a strongly agreed level ($\bar{x}=4.51$, SD. = .50). When considering each item, it was found that an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China was a strongly agree level ($\bar{x}= 4.67$, SD. = 0.48) The fifth stage is a pre-and posttest to assess vocabulary proficiency before and after an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The study examined student satisfaction with an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The students' satisfaction with online learning platforms and their attitudes toward using IT for Education. Based on the study hypothesis, three measurement and Evaluation specialists created and administered the questionnaire to evaluate teaching an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. Researchers assessed data alignment with aims using the IOC. Using questionnaire data, an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province,

China will determine whether student satisfaction with IT-based Learning can get rich learning resources was strongly agreed on level ($\bar{x}= 4.60$, SD. = .50), respectively.

CONCLUSION AND DISCUSSION

The analysis result of the above an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China.1) Results of evaluation efficiency of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The average mean score of the ongoing score was 81.40, and the mean score of posttests was 81.23, which indicated a substantial improvement in an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The result revealed that the value of efficiency of E1/E2 was 81.40/81.23. To summarize, this online Learning based on an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China is developed according to the standard criteria 80/80 defined.2) Results of Evaluation of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China by three content experts. The results of the content quality assessment of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China were evaluated by three content experts. The overall quality was excellent level ($\bar{x}= 4.78$, SD. = .23). When considering each item, it was found that consistency between content and learning objectives, the content is interesting, content accuracy, the language used in the range is appropriate for the learners, activities are consistent with the content and the overview of the content is complete were excellent level ($\bar{x}= 5.00$, SD. = .00), respectively.3) Results of Evaluation of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China from three media experts. The results of the media quality assessment of an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China were evaluated by three media experts. The overall quality was excellent level ($\bar{x}= 4.50$, SD. = .58). When considering each item, it was found that learning through an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China is easy to understand, easy to use, uncomplicated and the details are clear and easy to understand were excellent level ($\bar{x}= 4.85$, SD. = .58), respectively.4) Comparison of average scores before and after of the teachers using the an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The mean score of pretests was 8.80, and the standard deviation (SD.) score was 2.33. The result after using an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China into a high post-test of 16.27 and standard deviation (SD.) of 14.8 and t-test analysis before and after the treatment .20, .68, .08, which demonstrated a considerable difference was statistically significant at the .05 level. 5) Study students' satisfaction using an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China. The results of the Evaluation of students' satisfaction with an application based on conflict resolution strategies for first-year undergraduate students in Yunnan, China by 30 students. The overall teachers' satisfaction was strongly agree level ($\bar{x}= 4.51$, SD. = .50). When considering each item, it was found that an Application on Strategies for Conflict Resolution for first-year undergraduate students in Yunnan Province, China can be innovative teaching methods was strongly agree level ($\bar{x}= 4.67$, SD. = .48) and, blended teaching online according to Super Star Learning Pass model on an Application on Strategies for Conflict Resolution can get rich learning resources was strongly agree level ($\bar{x}= 4.60$, SD. = .50), respectively.

RECOMMENDATION

Integrating conflict resolution education into orientation programs, this project applies conflict resolution strategies to first-year undergraduate students in Yunnan Province, China. The aim is to mitigate the challenges of new academic pressures, navigating diverse peer groups, and understanding a changing social environment. This transformative experience fosters conflict reduction in both personal and academic relationships, enabling students to manage conflict constructively.

REFERENCES

Ardiansyah, A. (2024). Enforcement of Prophetic Law in Settlement of Land Cases in Indonesia. *Available at SSRN 4956207*.

Ding, H., Su, C., Wu, J., Lv, H., Tan, Y., Tai, X., ... & Wu, C. (2024). Highly crystalline iridium–nickel nanocages with subnanopores for acidic bifunctional water splitting electrolysis. *Journal of the American Chemical Society*, 146(11), 7858-7867.

De Mooij, M., & Hofstede, G. (2010). The Hofstede model: Applications to global branding and advertising strategy and research. *International Journal of advertising*, 29(1), 85-110.

Shen, Z., Lai, M., & Wang, F. (2024). Investigating the influence of gamification on motivation and learning outcomes in online language learning. *Frontiers in Psychology*, 15, 1295709.

Qi, Y., He, Y., Qi, X., Zhang, Y., & Yang, G. (2023). Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation. In *Proceedings of the IEEE/CVF international conference on computer vision* (pp. 6070-6079).

Vinokur, E., Yomtovian, A., Marom, M. S., Itzchakov, G., & Baron, L. (2024). Social-based learning and leadership in school: Conflict management training for holistic, relational conflict resolution. *Frontiers in Social Psychology*, 2, 1412968.

Zhou, J., Sun, H., Wang, Z., Cong, W., Zeng, M., Zhou, W., ... & Fan, J. (2025). China liver cancer guidelines for the diagnosis and treatment of hepatocellular carcinoma (2024 edition). *Liver Cancer*, 14(6), 779-835.

Arabic Learners' Perceptions of Google Docs-Mediated Small-Group Collaborative Writing

Maher Abdel Alkhateeb

*Ph.D. student, University of Kentucky, Department of Curriculum and Instruction, College of Education
Khateebam82@gmail.com; malkh2@uky.edu
https://orcid.org/0000-0002-4244-078X*

ABSTRACT

This study explored the perceptions of Arabic as a Foreign Language (AFL) learners regarding the use of Google Docs for small group writing tasks in three AFL classes at two U.S. universities. Utilizing an exploratory single case study design, the research gathered survey data from twenty students to examine their experiences with technology-mediated collaborative writing. The findings suggest that students viewed Google Docs as a flexible and user-friendly tool that facilitated collaboration and enhanced their writing process. Students also had a positive perception of small group collaborative writing, which contributed to the improvement of their final written texts, provided them with opportunities to observe and learn from their group partners' writing styles, and enhanced their vocabulary and grammar knowledge. However, the study's small sample size and reliance on self-reported survey data limit the generalizability of the results and do not fully capture students' interactions during the writing process.

Keywords: Arabic as a Foreign Language, collaborative writing, Google Docs, technology integration, student perceptions

INTRODUCTION

Collaborative learning in second language (L2) classes is an important pedagogical practice that has been shown to improve L2 acquisition (Swain & Lapkin, 1998). One form of collaborative learning that is increasingly utilized in L2 contexts is collaborative writing. Research has identified many benefits of collaborative writing for L2 learners, such as providing learners with the opportunity to pool their linguistic knowledge and resources (Donato, 1994; Elola & Oskoz, 2010; Storch, 1999, 2005), which can lead to improvements in writing quality and accuracy (Elola & Oskoz, 2010; Storch, 2005; Wigglesworth & Storch 2009; Woo, Chu, & Li, 2013). Additionally, collaborative writing gives learners a sense of audience (Alwaleedi, 2017), and increases students' attention to structure, grammar, and vocabulary use during the writing process (Swain & Lapkin, 1998).

Advancements in technology that facilitate collaboration processes have gained the interests of L2 teachers, researchers, and practitioners. As Kessler and Bikowski (2010) noted, "the evolution of collaborative writing may be intrinsically connected with the iterations of technology" (p. 43). One of these technologies that has been found to facilitate the collaboration process is web 2.0 tools (e.g., wikis, blogs, Google Docs). Various studies have shown the benefits of integrating web 2.0 technologies into L2 instruction. For example, these technologies enable a group of learners to co-construct, view, and edit texts both synchronously and asynchronously in ways that are not possible in paper-based collaborative writing (Bikowski & Vithanage, 2016; Godwin-Jones, 2018), which increases L2 learner's exposure to the target language beyond the walls of traditional classrooms and allows teachers and researchers to access the writing process history, including every user's participation (Arnold, Ducate, Lomicka, & Lord, 2009; Arnold, Ducate, & Kost, 2012; Elola & Oskoz, 2010; Godwin-Jones, 2018). Teachers can also monitor the writing process without the need to collect drafts from the students (Kessler, Bikowski & Boggs, 2012), while learners can track who has viewed and edited the document, helping the learners to monitor their progress throughout the writing task (Godwin-Jones, 2018).

This study aims to explore the perceptions of Arabic as a foreign language (AFL) students regarding the integration of a Web 2.0 tool (Google Docs) into a small-group writing task in advanced Arabic Language courses at two universities in the USA.

LITERATURE REVIEW

L2 studies examining learners' perceptions of small-group writing, with or without technology support, have revealed mixed results. Some research has found that learners hold positive attitudes toward online technology-supported collaborative writing because it provides learners with flexibility and ability to work on a shared document without the need to be in the same place at the same time (Bikowski & Vithanage, 2016; Strobl, 2014).

For example, in Bikowski and Vithanage's (2016) study, 56 English as a second language (ESL) students reported that using wiki facilitated collaboration, allowing multiple students to work synchronously on the same document. Similarly, Strobl (2014) reported that German as L2 learners had positive attitudes toward using Google Docs for collaborative writing, highlighting the ability to write at their own pace and space as a major advantage.

Other studies have indicated that small group writing provides learners with a sense of ownership and shared responsibility, encouraging students to work collaboratively, and resulting in a higher quality written text (Lee, 2010; Lund, 2008). Additionally, research has highlighted the benefits of peer feedback in technology-supported collaborative writing. In Lin and Yang's (2011) study of a university-level English reading and writing course in Taiwan, students reported that receiving and providing feedback was among the most important benefits of wiki-supported writing. One participant in Lin and Yang's study noted that learning how to use the past tense correctly was one of the benefits. Similarly, in Elola and Oskoz's (2010) study, students reported that correcting each other's grammatical mistakes significantly helped improve their grammar knowledge. Caruso's (2014) study found that English as a foreign language students perceived improvements in vocabulary and grammar through collaborative writing.

Although small-group writing activities offer many benefits, some studies have reported that students have negative perceptions of these tasks. For example, Nelson and Carson (1998), in a case study of four ESL students at a U.S. university, found that students did not trust peer feedback as much as teacher feedback. Bikowski and Vithanage (2016) also reported that participants preferred receiving feedback from teachers over peers. Some students also felt uncomfortable editing or changing their peers' writing (Lin & Yang 2011). Additional challenges include issues with work distribution within groups. For instance, Strobel (2014) identified "free rider" issue during group synthesis writing tasks, where some members contributed minimally or did not participate in the collaborative task. Stroble also reported that some students expressed a preference for individual writing to avoid potential disagreement with peers and maintain their own writing pace.

Rationale for this Study

While many studies have examined collaborative writing in English as a second language (Arnold, Ducate, Lomicka, and Lord, 2009; Bikowski & Vithanage, 2016; Kessler, Bikowski, Boggs, 2010; Kessler, 2009; Mak & Coniam, 2008; Lai, Lei, & Liu, 2016; Lin & Yang, 2011; Lund, 2008; Woo, Chu, & Li, 2013), and some studies have been conducted in the German (Arnold, Ducate, & Kost, 2012; Kost, 2011; Strobl, 2014), and Spanish contexts (Elola and Oskoz, 2010), there is a lack of research on technology-supported collaborative writing in less commonly taught languages such as Arabic and Turkish.

This study aims to fill this gap by investigating students' perceptions of completing a small-group writing task in a technology-mediated environment, specifically using Google Docs as the collaborative writing platform in advanced Arabic language Courses. This study seeks to answer the following questions:

How do AFL students perceive the use of Google Docs as a collaborative tool?

How do AFL students perceive a small group writing task?

METHODOLOGY

This study is part of a larger project that utilized an exploratory, holistic, single case study design to understand how AFL learners approach a Google Docs-mediated writing assignment at two public universities in the USA. Specifically, this paper reports on students' perceptions of technology-mediated small group writing using a survey instrument. Survey items were developed based on relevant literature on collaborative writing and technology integration in L2 contexts (e.g., Storch, 2017; Kessler, 2009).

According to Yin (2009) defines case study as "an empirical inquiry that investigates a contemporary phenomenon in depth and within its real-life context" (p.18). Yin also argues that one of the reasons for the use of case study is "to examine contemporary events when the related behaviors cannot be manipulated" (p.11).

Participants

Twenty students enrolled in three third-year Arabic language classes at two research universities in the United States participated in this study. The distribution of participants was as follows: Five students were enrolled in one class at the first university, seven students and nine students in two classes at the second university. The students were instructed to self-select their writing partners to work on a shared writing assignment using Google Docs. Because of the uneven number of students in each class, students formed pairs and small groups. Table 1 displays the demographic information of the participant students.

Table 1. Demographic Information of the Participant Students

Variable	Category	Number
Gender	Male	6
	Female	13
	Other	1
Native language	Arabic	1
	English	16
	English & Arabic	2
	English & Spanish	1
Number of academic semesters studying Arabic language	5	2
	5.5	1
	6	12
	7	1
	8	4

As shown in Table 1, most participants identified as female ($n = 13$), while six identified as male and one identified as “other.” In terms of native language, most students reported English ($n = 16$) as their native language, with one student reporting Arabic, two students reporting both English and Arabic, and one student reporting both English and Spanish. Regarding Arabic language study, nearly all participants had studied Arabic for at least five semesters, with twelve students having completed six semesters and four students having completed eight semesters of study. This indicates that the participants had substantial prior exposure to Arabic language learning, making them suitable for participation in a technology-mediated, small group writing assignment in an advanced AFL context.

Procedures

As an Arabic language instructor, I piloted the survey in one of my second year Arabic language classes to assess the feasibility of using Google Docs for collaborative writing and to evaluate the clarity and validity of the post-study perception survey items as suggested by Dörnyei (2003).

After obtaining Institutional Review Board (IRB) approval for this study, I visited the participating classes to deliver a PowerPoint presentation explaining the purpose of this study and to distribute consent forms to both students and teachers. Then I revisited the classes to collect the signed consent forms. While participation in the survey was voluntary, the Google Docs-mediated writing assignment was a required component of the course and was completed by all students as part of their regular coursework. Following the completion of the writing assignment, the survey was administered in the students’ classes. In total, twenty students completed the survey.

The survey consisted of four sections. The first section collected demographic information related questions (see methodology section). The second and third sections measured students’ perceptions of using Google Docs and the small group writing assignment, using on a 5-point Likert scale. The fourth section included five open-ended questions to elicit insights into the students’ experiences and opinions.

To assess the internal consistency of the Likert-scale items, Cronbach Alpha coefficient was calculated, yielding a value of 0.93. According to Dörnyei (2003), Cronbach Alpha coefficient of 0.70 or higher is considered a good indicator of internal consistency. Frequency analyses of Likert-scale data were conducted using SPSS Statistics. Responses to the open-ended questions were analyzed thematically through iterative reading to identify emerging patterns and insights relevant to the research objectives.

FINDINGS and DISCUSSION

Perceptions of Google Docs as a Collaborative Tool

Nine statements addressed students’ perceptions of using Google Docs as a collaborative tool. The statements measured the students’ perceptions on a 5-point Likert scale ranging from “strongly disagree” to “strongly agree”.

Table 2. Students' Perceptions of Using Google Docs as a Collaborative Tool

Statements	N	Strongly disagree	Disagree	Neutral	Agree	Strongly Agree
1. Google Docs provided me with greater flexibility regarding time and place of working with my group members.	20	10%	0%	0%	35%	55%
2. Google Docs facilitated the collaboration process during this writing assignment.	20	0%	10%	0%	35%	55%
3. Google Docs was easy to use.	20	0%	0%	5%	25%	70%
4. I liked using Google Docs as a collaboration tool in this Arabic language class	20	5%	5%	5%	25%	60%
5. I would like the option to complete more small-group writing assignments using Google Docs in the Arabic language classes.	20	20%	0%	45%	30%	5%
6. I would have performed better on this writing assignment if it had been handwritten.	20	20%	20%	40%	5%	15%
7. Typing in Arabic using Google Docs was easy.	20	5%	35%	20%	35%	5%
8. Typing in Arabic using Google Docs was beneficial.	20	5%	0%	30%	50%	15%
9. Overall, I had a positive experience completing this writing assignment using Google Docs.	20	5%	0%	5%	60%	30%

Overall, students have positive perceptions of using Google Docs as a collaborative tool for completing group writing tasks in AFL classes. As shown in Table 2, most students (90%) agreed or strongly agreed that Google Docs provided flexibility in terms of time and place and facilitated collaboration among group members. Similarly, 95% of students agreed or strongly agreed that Google Docs was easy to use, and 85% reported that they enjoyed using it as a collaborative tool. These findings are consistent with previous studies (Bikawski & Vithanage, 2016; Strobl, 2014), which reported that flexibility and asynchronous nature of accessing web 2.0, such as Wiki and Google Docs, among the most perceived benefits. Suwantaratip and Wichadee's (2014) study also showed that majority of participants perceived Google Doc as either easy or very easy to use for English collaborative online writing assignments.

Although the students have positive views of Google Docs as a collaborative tool, their responses were more mixed regarding their preference to use Google Docs more frequently for future writing assignments. While 35% agreed or strongly agreed that they would like more assignments using Google Docs, 45% of students were neutral, suggesting uncertainty toward using Google Docs as a writing platform. Additionally, students also expressed neutral perceptions (40%) about whether handwritten assignments would be better than those completed via Google Docs. This neutrality may be related to challenges with typing in Arabic, as indicated below.

Responses indicated some challenges related to typing in Arabic. While 65% of students agreed or strongly agreed that typing in Arabic using Google Docs was beneficial, their perceptions of the ease of typing were divided: 40% agreed or strongly agreed that typing in Arabic was easy, whereas 40% disagreed or strongly disagreed. These findings suggest that although students have viewed typing in Arabic as beneficial, many still find it a challenging skill to learn.

Finally, students generally viewed the use of Google Doc positively, with 90% indicating that they had a positive experience completing the collaborative writing assignment using Google Docs. These findings echo those of

Nasri, Habali, and Adam (2022), who also found that ESL students perceived Google Docs as an effective tool that encourages collaboration and improves writing skills.

Perceptions of Small-Group writing

Sixteen statements addressed students' perceptions of small-group collaborative writing. The statements measured the students' perceptions on a 5-point Likert scale ranging from "strongly disagree" to "strongly agree". Table 3 below is a frequency analysis of the students' perceived opinions.

Table 3. Students' Perceptions of Small Group Writing

Statements	N	Strongly disagree	Disagree	Neutral	Agree	Strongly Agree
10. Writing in small groups in this Arabic course increased my motivation to write.	20	10%	0%	20%	50%	20%
11. Writing in small groups in this Arabic course helped me generate more ideas.	20	5%	5%	15%	50%	25%
12. Writing in small groups in this Arabic course helped me organize my ideas.	20	5%	5%	20%	45%	25%
13. Writing in small groups in this Arabic course provided me with opportunities to observe how other students write.	20	0%	0%	5%	55%	40%
14. Writing in small groups using Google Docs in this Arabic course helped me produce a better text than what I would have achieved writing alone.	20	5%	10%	15%	40%	30%
15. Writing in small groups in this Arabic course using Google Docs made me pay closer attention to my writing.	20	5%	5%	25%	35%	30%
16. Writing in small groups in this Arabic course enhanced the lexical (vocabulary) variety of our written text.	20	5%	10%	0%	50%	35%
17. Writing in small groups in this Arabic Course helped me understand some of the grammatical mistakes I make.	20	5%	0%	0%	70%	25%
18. Writing in small groups in this Arabic course helped me improve my vocabulary knowledge.	20	5%	0%	0%	75%	20%
19. Writing in small groups in this Arabic course helped me improve my grammar knowledge.	20	0%	5%	5%	60%	30%
20. I felt comfortable correcting my peers' mistakes.	20	10%	5%	0%	65%	20%
21. I felt comfortable commenting on my peers' writing.	20	0%	0%	0%	70%	30%
Table 3 (continued)						
22. My Arabic language proficiency made me confident editing my peers' writing.	20	5%	20%	15%	40%	20%
23. It was easy to agree with my peer(s) on the ideas to include in the text.	20	0%	0%	0%	50%	50%
24. Writing in small groups in this	20	5%	5%	0%	50%	40%

Arabic course enhanced the overall quality of the text.						
25.Overall, I enjoyed writing in small groups for this Arabic writing assignment.	20	0%	0%	20%	50%	30%

Students' responses regarding their perceptions of small-group writing in the Arabic course were generally positive. As shown in Table 3, 70% of students agreed or strongly agreed that writing in small groups increased their motivation to write in Arabic. Similarly, more than 70% of students reported that small-group writing helped them generate more ideas and organize them effectively within the shared text.

One of the most significant benefits highlighted was exposure to peer writing. Nearly all participants (95%) agreed or strongly agreed that small-group writing provided opportunities to observe how other students write in Arabic. In addition, 70% indicated that working collaboratively helped them produce a better written text than what they would have achieved individually. These findings align with previous research (Elola & oskoz, 2010; Nasri, Habali, & Adam, 2022), which reported that students perceived collaborative writing as beneficial for improving text quality, particularly in terms of content development and organization.

Regarding linguistic development, students reported substantial learning gains. More than 80% of students agreed or strongly agreed that small-group writing enhanced their vocabulary and grammar knowledge and helped them become more aware of their grammatical errors through peer interaction and correction. Similarly, 90% indicated that collaborative writing contributed to improvements in their grammar knowledge. These findings echo Bikawski and Vithanage (2016), who also reported that majority of the participants indicated that collaborative writing helped them improve their grammar. Likewise, Elola and Oskoz (2010) found that writing collaboratively increased learners' awareness of their grammar usage and led to more accurate writing.

Empirical evidence from previous studies supports these findings. Storch (2005), for example, compared texts written individually with texts written collaboratively and found that paired texts scored higher regarding grammatical accuracy and structure complexity among ESL learners. Other studies (Caruso, 2014; Hsu & Lo, 2018) have also reported that ESL learners' texts produced in pairs scored higher in terms of accuracy and complexity than those written individually, which reinforce the positive impact of collaborative writing on linguistic development.

Students also expressed high levels of comfort engaging in peer feedback. More than 85% of students agreed or strongly agreed that they felt comfortable correcting and commenting on their peers' writing, and that they were able to reach consensus with their group members regarding which ideas to include in the text. These results are consistent with Nasri, Habali, and Adam's (2022) study which revealed that students felt comfortable working collaboratively and editing their team member's written contributions. However, a study by Lin and Yang (2011) showed contrasting results, with participants reporting discomfort editing and changing their peers' writing.

Finally, 80% of students agreed or strongly agreed that collaborative writing enhanced the overall quality of the final product and enjoyed the experience.

Open-Ended Questions

In response to the question, "How would you describe the group you worked in? Did you all contribute in a balanced way?", students 35% of students reported varied experiences with group member contribution. About 35% indicated they contributed to the writing assignment in a balanced manner. For example, one student noted, "Both contributed in a balanced and equal way." Another 20% attributed balanced contribution to dividing the assignment into subtasks, with each group member responsible for a specific portion. As one student stated, "Yes—we split up the work evenly and didn't run into any issues." Another 35% reported that while contributions were generally balanced, one student took on a greater role due to advanced Arabic proficiency or being a native speaker. For instance, a student shared, "We all contributed, but we had one native speaker who did most of the editing of grammar and word choice." These findings are consistent with previous research by Bikawski and Vithange (2016), where majority of the participants indicated a successful collaboration. Stroble (2014) also reported similar results where most of the participants noted that the collaboration between group members went well. However, 10% of students reported that although contributions appeared balanced, one member tended to dominate the writing process. As one student explained, "Yes, I think we all contributed in a balanced way, but one group member deleted the section I wrote because they said they had new ideas and wanted to write it instead". This implies that disagreement between group members could be an issue in collaborative learning activities. Similar concerns were reported in Stroble' (2014) study, who found that some students have negative opinions about writing in groups or pairs and prefer to write individually to avoid such conflicts.

In response to the question, “Did you learn any skills from doing this writing assignment in pairs/small groups that you will use in future individually assigned Arabic writing assignments? If yes, please provide examples, 90% of students indicated that they had learned beneficial skills for future assignments, while 10% reported not gaining new skills from this experience. Frequently cited skills included typing in Arabic, developing new writing strategies and planning techniques, improving sentence structure, and identifying grammatical errors. For example, one student wrote, “I learned how to better type in Arabic and how to fix grammatical mistakes.”

In response to the question, “What are the advantages of the small-group writing assignment using Google Docs?”, students highlighted several benefits, including the ability to collaborate asynchronously without the need to meet in person, the opportunity to share and expand ideas, exposure to peers’ writing styles, learning new vocabulary, having additional reviewers to catch errors, and the ability to track changes easily. As one student stated, “More ideas, you get to learn new vocabulary and have another set of eyes on mistakes that you might not notice, you get to see changes that peers make in Google.”

Regarding disadvantages, students’ responses to the question, “What are the disadvantages of the small-group writing assignment using Google Docs?”, indicated that typing in Arabic was challenging and time-consuming, particularly without access to a standard Arabic keyboard. Additionally, the use of online translation tools such as Google Translate sometimes led to inaccurate word choices. Students also noted that using written comments to share ideas was less effective than face-to-face discussions. Other reported challenges included difficulties in coordinating schedules, combining ideas coherently, and dealing with group members who dominated the writing process and made changes without consulting others.

In response to the final question, “What do you suggest to improve pair/small group writing assignments using Google Docs in Arabic language classes?”, students made several recommendations: providing training on Arabic typing, ensuring access to computers with Arabic keyboards, requiring at least one face-to-face meeting for planning and discussion, allowing more time for assignments, and offering detailed feedback on the first draft rather than general comments.

CONCLUSION

The findings showed that students perceived both Google Docs and collaborative writing positively. Most students valued flexibility, ease of use, and collaboration opportunities that Google Docs provided. Small-group writing was also seen as beneficial for increasing motivation, generation and organizing ideas, and improving vocabulary and grammar knowledge. These results echo the findings of previous research that highlighted the pedagogical benefits of technology-mediated collaborative writing.

Despite the benefits, the study identified several challenges and concerns related to collaborative writing via Google Docs. Some students expressed uncertainty about using Google docs in future assignments. A significant concern was the difficulty of typing in Arabic, especially without access to Arabic keyboards. Other challenges related to task management and group dynamics, such as unequal participation and difficulties in coordination.

This study contributes to field of language education by focusing on Arabic as a less commonly taught language. The findings suggest that implementing Google Docs in collaborative writing tasks offers many pedagogical affordances for AFL learners. The results also suggest that Arabic language educators should consider providing Arabic typing training and clear instructions on how to access Arabic keyboards. It is also highly recommended to include rubrics with criteria to organize students’ group work and support more equal participation.

LIMITATIONS

This study employed an exploratory single case study design with a sample of twenty students across three Arabic as a Foreign Language (AFL) class. Therefore, the findings of this study may not be generalizable to broader AFL learner populations due to the small sample size and the specific instructional contexts in which the study was conducted.

Additionally, the study relied solely on student surveys to collect data, which may not fully capture the dynamics of students’ interactions during the collaborative writing process. Including additional data sources, such as classroom observations or post-study interviews, could provide a more comprehensive understanding of students’ collaborative behaviors and experiences.

REFERENCES

Alwaleedi, M. A. (2017). Examining Language Related Episodes (LREs) of Arabic as a second language (ASL) learners during collaborative writing activities. *Theory and Practice in Language Studies*, 7(4), 256-263.

Arnold, N., Ducate, L., & Kost, C. (2012). Collaboration or cooperation? Analyzing group dynamics and revision processes in wikis. *Calico Journal*, 29(3), 431-448.

Arnold, N., Ducate, L., Lomicka, L., & Lord, G. (2009). Assessing online collaboration among language teachers: A cross-institutional case study. *Journal of Interactive Online Learning*, 8(2), 121-139.

Bikowski, D., & Vithanage, R. (2016). Effects of web-based collaborative writing on individual L2 writing development. *Language Learning & Technology*, 20(1), 79-99.

Caruso, G. C. (2014). The impact of wiki-based collaborative writing on English L2 learners' individual writing development. (publication No.1568387) [Master's thesis, Portland State University]. ProQuest Dissertations and Theses Global.

Donato, R. (1994). Collective scaffolding in second language learning. In J. P. Lantolf, & G. Appel (Eds.), *Vygotskian approaches second language research* (pp. 33-56). New Jersey: Ablex.

Dörnyei, Z. (2003). *Questionnaires in second language research: Construction, administration, and processing*. Mahwah, New Jersey: Lawrence Erlbaum Associates, Publishers.

Elola, I. & Oskoz, A. (2010). Collaborative writing: Fostering foreign language and writing conventions development. *Language Learning & Technology*, 14(3), 51-71.

Godwin-Jones, R. (2018). Second language writing online: An update. *Language Learning & Technology*, 22(1), 1-15.

Kern, R., & Warschauer, M. (2000). Theory and practice of network-based language teaching. In M. Warschauer & R. Kern (Eds.), *Network-based language teaching: Concepts and practice* (pp. 1-19). New York: Cambridge University Press.

Kessler, G. (2009). Student-initiated attention to form in wiki-based collaborative writing. *Language Learning & Technology*, 13(1), 79-95.

Kessler, G., & Bikowski, D. (2010). Developing collaborative autonomous learning abilities in computer mediated language learning: Attention to meaning among students in wiki space. *Computer Assisted Language Learning*, 23(1), 41-58.

Kessler, G., Bikowski, D., & Boggs, J. (2012). Collaborative writing among second language learners in academic web-based projects. *Language Learning & Technology*, 16(1), 91-109.

Kost, C. (2011). Investigating writing strategies and revision behavior in collaborative wiki projects. *Calico Journal*, 28(3), 606-620.

Lai, C., Lei, C., & Liu, Y. (2016). The nature of collaboration and perceived learning in wiki-based collaborative writing. *Australasian Journal of Educational Technology*, 32(3).

Lee, L. (2010). Exploring wiki-mediated collaborative writing: A case study in an elementary Spanish course. *Calico Journal*, 27(2), 260-276.

Lin, W. C., & Yang, S. C. (2011). Exploring students' perceptions of integrating Wiki technology and peer feedback into English writing courses. *English Teaching: Practice and Critique*, 10(2), 88-103.

Lomicka, L., & Lord, G. (2016). Social networking and language learning. In Farr, F., & Murray, L. (Eds.). *The Routledge handbook of language learning and technology*. (pp. 255-268). Routledge.

Lund, A. (2008). Wikis: A collective approach to language production. *ReCALL*, 20(1), 35-54. DOI: 10.1017/S0958344008000414

Mak, B., & Coniam, D. (2008). Using wikis to enhance and develop writing skills among secondary school students in Hong Kong. *System*, 36(3), 437-455.

Nasri, N. F., Habali, A., & Adam, M. (2022). Google Docs: students' perceptions as online collaborative tool in learning writing skills. *International Journal of Academic Research in Progressive Education and Development*, 11(3), 690-705.

Nelson, G. L., & Carson, J. G. (1998). ESL students' perceptions of effectiveness in peer response groups. *Journal of Second Language Writing*, 7(2), 113-131.

Storch, N. (1999). Are two heads better than one? Pair work and grammatical accuracy. *System*, 27(3), 363-374.

Storch, N. (2002). Patterns of interaction in ESL pair work. *Language learning*, 52(1), 119-158.

Storch, N. (2005). Collaborative writing: Product, process, and students' reflection. *Journal of Second Language Writing*, 14(3), 153-173.

Storch, N. (2017). Collaborative writing. In Manchón, R. & Matsuda, P. (Eds.), *Handbook of Second and Foreign Language Writing* (pp. 387-403). Berlin: Walter de Gruyter.

Strobl, C. (2014). Affordances of Web 2.0 technologies for collaborative advanced writing in a foreign language. *Calico Journal*, 31(1), 1-18.

Swain, M., & Lapkin, S. (1998). Interaction and second language learning: Two adolescent French immersion students working together. *The Modern Language Journal*, 82(3), 320-337.

Suwantarathip, O., & Wichadee, S. (2014). The Effects of Collaborative Writing Activity Using Google Docs on Students' Writing Abilities. *Turkish Online Journal of Educational Technology-TOJET*, 13(2), 148-156.

Wigglesworth, G., & Storch, N. (2009). Pair versus individual writing: Effects on fluency, complexity, and accuracy. *Language Testing*, 26(3), 445-466.

Woo, M. M., Chu, S. K. W., & Li, X. (2013). Peer-feedback and revision process in a wiki mediated collaborative writing. *Educational Technology Research and Development*, 61(2), 279-309.

Yin, R. K. (2009). *Case study research and applications: Design and methods*. Sage Publications.

Contrasting National Strategies for Digital Inclusion in Education: A Comparative Analysis of Mauritius and Singapore

Karolina Radyńska- Cenkier

Independent Researcher, Warsaw, Poland

k.radyńska.cenkier@gmail.com

ORCID iD: <https://orcid.org/0009-0002-9646-5314>

Abstract

This study examines the national digital inclusion strategies in Mauritius and Singapore associated with the integration of information and communication technologies (ICT) in education, especially for learners with specific learning difficulties, such as dyslexia and dyscalculia. While Mauritius, as a small island developing state, faces challenges related to infrastructure, teacher training and fragmented policy implementation, Singapore has long-term national planning that has led to the development of a highly digitised economy in which ICT integration is embedded. This study employed a qualitative comparative document analysis approach, which involved reviewing academic publications by Mauritian scholars, UNESCO and World Bank reports and the Mauritian and Singaporean national education frameworks. Thematic analysis was employed to identify the key digital inclusion and policy implementation patterns in both countries. It was found that Singapore has a model that emphasises system-wide inclusion through a coherent alignment of policies, professional teacher development and digital infrastructure. Mauritius, however, is further behind. While it has potential, more coordinated, sustained strategies are required. This analysis contributes to the literature by addressing a gap in comparative studies between small island developing states and advanced digital economies, and offers policy-relevant insights for countries seeking to design effective, equitable ICT strategies.

Keywords: digital inclusion, ICT in education, Mauritius, Singapore, special educational needs, comparative education

Introduction

Driven by the rapid integration of information and communication technologies (ICT), there has been a profound transformation in education over the past two decades. The development of digital tools has reshaped student learning, instructional design and delivery and institutional teaching and assessment. Learners can now engage using adaptive platforms, participate in online courses and access global digital libraries, all of which reduce the traditional barriers to education of time, cost and geography (UNESCO, 2023). Similarly, open universities and online learning platforms have expanded the opportunities for lifelong learning and flexible higher education participation.

Despite these global advancements, there are significant disparities in the methods being used to design and implement digital inclusion strategies. While international research has confirmed the transformative potential of ICT, it has also emphasised the persistent socio-economic, geographical and disability-related divides (OECD, 2023; UNESCO, 2024; World Bank/EdStats, 2023). Therefore, the critical question is whether technological integration can ensure equitable participation for diverse learners, particularly those with specific learning difficulties, such as dyslexia and dyscalculia.

Unfortunately, compared to highly digitised economies, there is limited comparative evidence on how this question is being addressed in small developing island states (SIDS). Despite national commitments to expand ICT use in education in Mauritius, for example, there are continuing challenges related to infrastructure, teacher training and resource allocation. In contrast, Singapore has become a global leader through its Smart Nation initiatives and systematic integration of digital technologies into both mainstream and inclusive education (Tan, 2020; Ministry of Education Singapore, 2020).

This study addresses this research gap in fostering digital inclusion in education by comparing the national strategies of Mauritius and Singapore, with particular attention paid to learners with dyslexia and dyscalculia, the needs of whom are frequently overlooked in policy documents. Through our analysis of both countries' approaches, we examine the strengths and limitations and identify lessons that could assist policymakers seeking to design effective and equitable ICT strategies in other regions.

Literature Review

Digital inclusion in education research has emphasised the transformative potential of ICT in expanding access, improving quality and fostering equity (UNESCO, 2020; OECD, 2022). However, while previous studies have consistently highlighted persistent access and usage gaps across income, geography and disability status, there have been few studies on the use of ICT applications for students with learning difficulties, such as dyslexia and dyscalculia (Espina, 2023). While adaptive learning technologies and assistive tools have become increasingly available, their adoption varies widely depending on national contexts and policy priorities.

In this article, we use the term special educational needs (SEN) to cover a wide spectrum of learning differences, which includes specific learning difficulties such as dyslexia and dyscalculia (UNESCO, 2020).

Several key institutions and frameworks in Singapore are focused on inclusive education and technology-enhanced learning. For example, its national digital literacy program (NDLP) promotes digital competence for both students and teachers, and its student learning space (SLS) provides an online national learning platform that allows for differentiated instruction (MOE Singapore, 2023).

The Early Childhood Development Agency and Dyslexia Association of Singapore (DAS) also play a vital role in early screening, intervention and teacher training (DAS, 2024).

Singapore aligns its approach with the universal design for learning principles, which promote the use of assistive technologies such as text-to-speech (TTS) and speech-to-text (STT) tools.

In Mauritius, comparable efforts are coordinated under its Education Digital Learning Programme, which focuses on equitable access to ICT and professional teacher development (Ministry of Education, Mauritius, 2023).

Therefore, to better understand the inclusive support ICT provides for SEN learners, this study situates its comparative analysis within these institutional and policy frameworks.

SIDS are under-researched in comparative education studies. Recent work in Mauritius has underscored the importance of school leadership and teacher preparedness in overcoming the barriers to ICT integration (Ittea, Bahadur, & Goolaub, 2022). In contrast, Singapore's comprehensive digital education policies are strongly supported by institutional capacity and systematic teacher training (Tan, 2020; OECD, 2022). The lack of comparative studies between such diverse conditions is an important justification for this research.

While previous studies have explored ICT integration in education, most have focused on high-income countries or general digital literacy frameworks rather than inclusive education for learners with specific learning difficulties. However, there has been little comparative research on inclusive digital policy in SIDS and the influence of contextual factors. While existing studies on Singapore have highlighted its structured approach to ICT-supported inclusion (Yong et al., 2021; Lim & Tan, 2020), there is little evidence on the use of these practices in emerging countries such as Mauritius. Therefore, there is a need for comprehensive comparative analyses to identify the ICT strategies, barriers and opportunities in diverse socio-economic contexts. This study addresses this gap by comparing national frameworks, teacher preparedness and assistive technology integration in Singapore and Mauritius.

Methodology

It is adopted a qualitative, desk-based comparative research design to examine ICT integration in the inclusive education policies and practices in Singapore and Mauritius. Specifically, the analysis focused on identifying the similarities and contrasts in the national strategies, institutional frameworks, teacher training programmes and use of assistive technologies to support learners with specific learning difficulties, such as dyslexia and dyscalculia. The primary data sources were government policy documents, strategic reports and publications from international organisations, such as UNESCO, UNICEF and the World Bank, as well as peer-reviewed academic studies indexed in Scopus and ERIC. A thematic content analysis procedure was employed to identify any recurring concepts related to digital inclusion, accessibility and pedagogical innovation.

To understand the contextual and cultural differences between a high-income digital economy (Singapore) and a small island developing state (Mauritius), Bowen's document analysis framework (Bowen, 2009) was employed, which emphasises interpretive synthesis rather than quantitative measurement. This methodological approach allows for the integration of evidence from diverse policy and research sources while acknowledging that, as a desk-based investigation, there is no primary empirical data. For transparency, approximately 35 policy documents, strategic frameworks, and international reports were analysed for Mauritius and 40 for Singapore.

Documents were cross-checked across multiple sources (national ministries, UNESCO, World Bank, OECD) to validate thematic consistency and reduce policy bias. Nonetheless, this analysis approach provides a solid foundation for future empirical research on ICT-supported inclusion in education.

This study employed a comparative document analysis approach focused on national education policies, strategic frameworks, digital inclusion and SEN reports. A systematic review and interpretation of policy texts and international reports (UNESCO, World Bank, national ministries) was conducted to identify the common themes, divergences and contextual factors that have and are shaping ICT implementation in inclusive education. Therefore, to generate interpretative insights rather than measurable outcomes, the analysis followed a qualitative comparative logic rather than conducting a statistical comparison.

The document selection was based on the following inclusion criteria: relevance to national ICT strategies, focus on inclusive or special education and published between 2015 and 2025. To identify the recurring patterns, strategic priorities and contextual differences, each document was examined using thematic content analysis, after which the emerging themes were compared across both national contexts to highlight the similarities, divergences and implementation gaps.

Policy and Systemic Framework

Mauritius has developed a policy foundation for inclusive and technology-enhanced education aligned with international frameworks such as the Incheon Declaration and Sustainable Development Goal 4, which emphasise equitable, quality education and lifelong learning. The nine-year continuous basic education (NYCBE) reform, which was launched as part of the 2015–2019 Government Program, was designed to replace the former Certificate of Primary Education examination and provide all students with nine uninterrupted years of quality basic education. The subsequent National Curriculum Framework (NCF-2015) confirmed this ‘learning for all’ goal by introducing a holistic and inclusive curriculum to cultivate the key twenty-first-century competencies: creativity, problem-solving and adaptability (Ministry of Education and Human Resources, Tertiary Education, Science and Technology, 2015).

Based on these principles, Mauritius now guarantees free and compulsory schooling for all from five to 16 years old, with curriculum renewal being based on a continuous, research-based process that encompasses planning, design, implementation, monitoring and evaluation. With inclusivity embedded as the guiding educational transformation principle, this cyclical approach ensures that all reforms are made as a response to changing social and technological needs.

ICT Integration and School-Level Initiatives

A cornerstone of Mauritius’s ICT-in-education strategy has been its Early Digital Learning Program, which was introduced in 2017–2018 under its NYCBE agenda to promote ‘twenty-first-century digital classrooms’. To foster more personalised learning pathways, the program combines device provision, curated digital content and professional teacher development (MOETEST, 2018; Digital Learning in Primary Schools, 2024). In 2014, around 24000 tablets were distributed to Form 4 students and educators through the national Tablet PC Initiative (Jugee & Santally, 2016), and in 2018, a further 26800 devices were supplied to Grades 1 and 2 as part of the India-Mauritius ‘smart class’ partnership (News on Sunday/DefiMedia, 2018).

Previous studies (Hurreeram, 2019; Veeraragavoodoo, 2017) have reported mixed but promising results. Teachers stated that while there was improved student engagement and differentiation, there were also ongoing training, content alignment and technical maintenance challenges. UNESCO-IITE assessments in 2021 and 2025 during and after the COVID-19 pandemic confirmed that ICT had the potential to broaden access, but highlighted the enduring gaps in assistive technologies and inclusive digital design.

At the institutional level and aligned with Ministry priorities, the Mauritius Institute of Education (MIE) is the central agency for teacher training, curriculum development, ICT integration research, professional learning and resource development (MIE, n.d.). The Ministry also maintains national online resource portals to assist teachers and students across all grade levels. While these initiatives demonstrate a steady progress towards mainstream ICT adoption, they also show that assistive technologies and SEN-focused training are critical frontiers for achieving genuine digital inclusion.

Digital Access and Teacher Capacity

In the case of Mauritius, recent data from UNESCO (2024) and the World Bank (2023) highlight substantial progress in digital infrastructure. Approximately 93 percent of primary schools and all secondary schools are now

connected to the internet, which has average broadband speeds of between 20 and 30 Mbps, and about 84 percent of households are connected; however, rural access is lower at 67 percent.

Teacher readiness indicators also reflect the ongoing improvements, with roughly 78 percent of primary teachers having completed at least one ICT-related training course, compared to 42 percent of special-education teachers and 25 percent of pre-primary educators (UNESCO UIS, 2023). While infrastructure access is nearly universal, these data indicate that further professional pedagogical learning opportunities and targeted capacity building are needed, especially for inclusive and early childhood education.

Institutional Leadership and Partnerships

The ICT integration institutional architecture in Mauritius is led by the Ministry of Education, Tertiary Education, Science and Technology (MoETEST) and actively supported by the Mauritius Institute of Education (MIE) and the Human Resource Development Council (HRDC), which funds the national ICT capacity-building programmes for teachers and technical staff (HRDC, 2023).

International partnerships have also significantly strengthened Mauritius' national capacity. UNESCO's Inclusive Digital Education for Africa project (2023-2025) selected Mauritius as a pilot country to develop accessible e-learning materials and train teachers in inclusive digital pedagogy. Similarly, UNICEF Mauritius (2022) partnered with MoETEST to expand distance-learning platforms and improve access to assistive technologies for learners with disabilities.

Despite these achievements, there are implementation gaps. For example, there are few locally developed assistive applications for learners with dyslexia or dyscalculia, and most Ministry-curated digital materials lack accessibility features, such as text-to-speech or adjustable reading levels. Ramen (2022, 2023) also found that there were ongoing leadership and sustainability challenges: constrained adaptive technology use, limited preparation, and fragmented policy coordination. Therefore, sustained investment in teacher development, the localisation of assistive tools, and systematic evaluations of digital inclusion outcomes remain key priorities.

Inclusive Education and Remaining Barriers

Since Mauritius officially endorsed Education for All in the 1990s, there has been a gradual shift from segregated to inclusive schooling; however, this transition has been uneven. Most special schools and centres for students with learning difficulties, such as dyslexia, autism or visual impairments, are still operated by non-governmental organisations that receive limited public funding. Mainstream schools also frequently lack teachers who have been trained to support SEN, and many schools still have infrastructure barriers, such as classrooms and toilets that are not accessible to students with mobility issues (UNESCO, 2021).

Mauritian schools have limited access to adaptive technologies, such as screen readers, dyslexia-friendly applications, and Braille or audio resources, and many teachers need more training to be able to effectively utilise ICT for students with learning difficulties. Veerabudren, Kritzinger & Ramasawmy (2021) found that there was a need for systematic professional development and pre-service training in inclusive pedagogy.

Overall, Mauritius' ICT-focused education attempts are paradoxical. While it has achieved near-universal digital access in mainstream education, it continues to struggle to extend these benefits to learners with disabilities. This situation highlights that digital inclusion is more than just appropriate infrastructure and devices, as the success of these is equally dependent on teacher preparation and training, content accessibility and coherent policy coordination.

The Mauritian experience highlights both the achievements and ongoing barriers to building inclusive digital education ecosystems. To contextualise these findings and offer useful points of comparison, the next section examines Singapore, which has a more mature technological framework.

Policy Architecture and Strategic Framework

Singapore's digital education strategy is embedded in its national Smart Nation agenda and the Ministry of Education's (MOE) series of ICT-in-Education Masterplans. Following three earlier phases, Masterplan 4 (2009-2014) implemented a system-wide focus on quality learning, student-centric pedagogy and responsible digital citizenship (MOE, 2023a). The most recent EdTech Masterplan 2030 extends this trajectory by outlining the ways that technology can be leveraged to enhance teaching and learning in the future decade (MOE, 2023b; Natarajan, 2021).

Singapore's policy frameworks, which are supported by strong institutional leadership and a culture of continuous improvement, have a long-term vision for technology integration across all education dimensions: curriculum, pedagogy, assessment and inclusion.

ICT Initiatives and Digital Learning Infrastructure

At the operational level, Singapore MOE's 2020 National Digital Literacy Programme (NDLP) aims to develop students' competencies across a 'Find, Think, Apply, Create' framework. The NDLP's flagship component is its personal learning device initiative, which ensures that every secondary student has access to a school-prescribed digital device for curricular use (MOE, 2023c).

Classroom learning in Singapore is supported by the national SLS, which is a digital platform that was jointly developed by the MOE and GovTech to be a central hub for online teaching and learning across all schools (MOE/GovTech, n.d.; MOE, n.d.-a). The SLS includes interactive content, assessment tools and collaborative spaces that allow for blended learning across the education system.

Infrastructure investments have also ensured universal high-speed internet and device access in all schools, which has made Singapore a global benchmark for digital education transformation.

Professional Teacher Development and Institutional Leadership

Teacher development is coordinated through the MOE and the National Institute of Education (NIE), which together define the baseline ICT competencies for educators and embed technology-enhanced pedagogies in both pre-service and in-service training (Natarajan, 2021).

A 2021 synthesis of 126 Singapore-based studies by NIE revealed that effective ICT integration depends on a coherent alignment between leadership, curriculum and assessment (NIE, 2021). These findings inform ongoing policy refinements and demonstrate how Singapore's 'research-informed governance' model bridges evidence and implementation.

Continuous monitoring loops between MOE headquarters, cluster superintendents and schools ensure regular feedback on platform use, teaching quality, and student outcomes. This data-driven governance enables rapid adaptation and supports policy sustainability.

Inclusive Education and SEN Policy Implementation

Singapore's inclusive education system provides a support continuum for learners with diverse needs from early childhood to post-primary. The MOE defines SEN as difficulties that interfere with a child's ability to learn or participate in school life, such as challenges in literacy, communication, social interaction or learning access due to sensory or physical impairment (MOE, 2024).

Support begins at the early intervention (EI) stage, which provides children aged 0–6 with structured programmes designed to strengthen their physical, cognitive, emotional, and social development. These EI services aim to reduce developmental delays, minimise secondary difficulties, and enhance school readiness. Qualified specialists provide professional assessments to identify learning needs and determine whether a child should be placed in a special education (SPED) or mainstream school (MOE, 2024).

In mainstream schools, students with mild to moderate learning difficulties also receive tailored classroom accommodation and support from trained personnel, such as allied educators (Learning and Behavioural Support). For students with more complex needs, the MOE collaborates with a network of SPED schools, which are generally operated by voluntary welfare organisations but funded and quality assured by the government. Parents are given guidance and referrals by agencies such as SG Enable, which coordinates information and access to disability-related services, and the Dyslexia Association of Singapore (DAS), which offers targeted literacy interventions using evidence-based and technology-supported approaches (MOE, 2024).

Singapore's multi-tiered framework that links early detection, specialised intervention, and strong institutional partnerships highlights its systematic inclusion approach to ensure equitable learning opportunities for all students.

Pedagogical Innovations and Classroom Practice

Singapore's commitment to inclusive digital education is also evident in its classroom practice. DAS provides a wide range of programmes from preschool to higher education for learners with dyslexia and other specific learning issues. To enhance learning engagement and accessibility, its educators combine literacy instruction expertise with creative digital technology integration.

Dyslexia, once viewed primarily as a phonological deficit, is now recognised as a complex learning difficulty that encompasses multiple cognitive challenges associated with visual and auditory processing, sequencing, timing, attention, and working memory. Baddeley and Logie's working memory model places the phonological loop as central to verbal information processing, which explains why dyslexic learners often have planning, organisation, and task sequencing difficulties. These learners may also struggle with maintaining focus and regulating their attention when asked to process large amounts of digital information. Because of these cognitive characteristics, technology-based tools, such as text-to-speech software, multisensory reading applications and structured literacy platforms, can play a vital role in supporting the learning processes of dyslexic students (Yong et al., 2021).

Effective technology use is essential when seeking to support dyslexic learners, particularly for reading, writing and memory retention tasks. While early research raised concerns that digital tools might create dependency or interfere with literacy development (Alvermann & Hutchins, 2012), more recent evidence indicates that well-designed assistive technologies can meaningfully enhance learning autonomy and literacy outcomes for dyslexic learners (Al- Azawei, Serenelli & Lundqvist, 2016). More recent research has also found that interactive computer-based programmes that combine visual, auditory and phonemic cues, such as game-based literacy interventions, can strengthen visual processing and short-term memory.

The growing emphasis on inclusive education in Singapore has also encouraged the integration of assistive technologies (AT) into classroom practice. Lewis (1993) defined AT as technologies that compensate for the difficulties experienced by people with learning challenges. Tools such as TTS, STT and spelling and grammar checkers, which are widely available on tablets and smartphones, assist dyslexic learners in completing tasks more independently. Because the use of these tools is common in classrooms, they can reduce the stigma experienced by dyslexic students and allow them to have a more equal participation with their non-dyslexic peers (Yong et al., 2021).

To personalise instruction, the teachers at DAS have adapted the Orton–Gillingham (O-G) approach, which is a structured, multisensory method that supports reading and spelling development, to technology-based resources (DAS, 2024). To support learners with dyscalculia, aligned with Singapore's broader national goals of inclusive digital education, DAS has also developed numeracy remediation programmes and adaptive digital tools that use multisensory strategies and AT to strengthen mathematical reasoning, memory and sequencing skills (DAS, 2024; MOE Singapore, 2023).

Professional teacher preparation enables instructors to more flexibly respond to diverse learner profiles and tailor the educational content to each student's pace and needs. Through consistent support and adaptive learning environments, DAS educators also act as mentors to help students build confidence, resilience and a sense of achievement.

This model exemplifies how inclusive pedagogy and educational technology can foster meaningful participation and literacy development for learners who process information differently. By embedding technology into evidence-based teaching frameworks, Singapore demonstrates that innovation and inclusion can coexist when there is a coherent, learner-centred education system.

Evaluation, Challenges and Sustainability

Singapore's education system uses real-time analytics and evidence-based reporting to continuously evaluate its policy outcomes. These school and system-level feedback mechanisms provide valuable information for refinements in pedagogy, technology use and inclusion.

Recent studies have highlighted new educational technology tensions between innovation and equity in Singapore's leading education system. Specifically, the growing influence of artificial intelligence (AI) in education has led to the need to reconsider the pedagogical beliefs and practices of teachers and policymakers. Technological change in education is shaped by complex interactions between social, political and economic forces, dynamics that researchers describe as digital education 'dualities' that can simultaneously empower and marginalise.

The framework identifies several divides that could hinder inclusion: an access divide, where learners and teachers have unequal access to digital devices or connectivity; a representation divide, where underrepresented groups are excluded from data generation; an algorithmic divide, in which biased datasets reinforce systemic inequities; an interpretation divide, where differing digital literacy and data fluency levels lead to misinterpretation; and a coding divide, where asymmetrical digital environment participation limits the capacity of disadvantaged group to accumulate social capital (Van Dijk, 2020; Selwyn, 2022).

Addressing these divides requires both infrastructure support and critical reflection on the effects of technology on power, representation and inclusion in educational ecosystems. This analysis offers valuable insights into the complex interplay between innovation and equity in Singapore's evolving digital landscape (Toh & Looi, 2024).

While the high-pressure academic culture and strong assessment focus are ongoing challenges, Singapore's case illustrates that exceptional institutional capacity, effective inter-agency collaboration and sustained investment can provide an inclusive digital transformation. Therefore, this analysis offers valuable insights for other small states seeking to balance innovation, equity and educational quality.

Comparative Analysis (Discussion)

The comparative review of digital inclusion approaches in Mauritius and Singapore highlights key convergences and divergences, particularly in policy coherence, scope and inclusivity.

Singapore has developed a highly systematic, long-term strategy that is aligned with its Smart Nation agenda, which ensures consistency. However, as Mauritius has a more general ICT strategy, its inclusive initiatives are either fragmented or running only as pilots. The teacher training in Mauritius lacks SEN-specific digital tools, whereas Singapore ensures all teachers receive this type of preparation. In contrast to Singapore's universal coverage, digital infrastructure is also uneven in Mauritius. Most notably, Singapore has implemented adaptive technologies for dyslexia and dyscalculia, whereas Mauritius is only beginning to explore such solutions.

As summarised in Table 1, Singapore's model has systematic coherence and scalability. However, Mauritius's approach is fragmented but evolving, which reflects the different stage in its digital inclusion policy.

Dimension	Mauritius	Singapore
Policy framework	National Strategy for ICT Integration (2019); fragmented, limited focus on inclusion	Smart Nation: comprehensive, aligned with the national agenda; strong monitoring
Teacher development	ICT training expanding; limited SEN-specific modules	Mandatory ICT training; inclusive education modules via NIE
Infrastructure	Progress in devices and platforms; rural disparities remain	Universal high-speed internet; full device integration
Support for SEN	Pilot projects with NGOs/UNESCO; no systemic tools for dyslexia/dyscalculia	Adaptive learning platforms and assistive technologies are widely available.
Monitoring	Weak monitoring; limited local evidence	Strong evaluation systems; policies revised based on data
Overall trend	Emerging but fragmented; strong potential	Mature, system-wide, globally relevant model

Table 1. Comparative Summary of Digital Inclusion Strategies in Mauritius and Singapore

Exam pressure and well-being support

While Singapore's education system continues to achieve globally recognised outcomes, it faces ongoing challenges related to its exam-centric culture and associated student stress. In response, the MOE has implemented a multi-tiered approach to promote socio-emotional learning and reduce excessive performance pressure. From 2019 onwards, several policy adjustments, such as the removal of mid-year examinations for Primary grades 3 and 5, and Secondary years 1 and 3, have been made to allow greater space for formative assessments and holistic development (MOE, 2023d).

At the same time, the MOE Guidance Branch and the Institute of Mental Health (IMH) have expanded teacher and school counsellor training in recognising the early signs of student distress. Singapore's Student Well-Being Framework (2021) promotes 'care, connection and competence' across mainstream and SPED schools (MOE, 2021), and the integration of well-being data into the MOE's school improvement review cycles includes feedback loops between psychological services, principals and curriculum divisions, all of which ensure that technological

innovation is aligned with student welfare. These developments suggest that Singapore's digitalisation strategy is both technologically advanced and increasingly human-centred.

Compared to Mauritius' literacy-focused support, the provisions for learners with dyscalculia are still emerging. While there are pilot numeracy interventions and visual, step-by-step maths applications, access to screening tools and ICT-based assistive software for students with numerical difficulties is limited, and SEN-focused continuing professional development in mathematics is only expanding slowly (UNESCO, 2020; MIE, 2023).

As shown in Table 1, Singapore has systematically aligned ICT integration, teacher capacity and inclusive policy evaluation, whereas Mauritius needs to strengthen its institutional coordination and accessibility frameworks. Overall, the comparison demonstrates that digital inclusion outcomes depend less on technology availability than on policy coherence, sustained teacher preparation, and embedded assistive technology frameworks.

Implications for Policy and Practice

Policymakers in both countries should prioritise continuous professional development for teachers, particularly in the use of AT for learners with specific learning difficulties. Mauritius could benefit from adopting Singapore's data-driven monitoring mechanisms and systematic inclusion frameworks, and Singapore could draw from Mauritius's experience in community-based partnerships. Regional collaboration through UNESCO and Commonwealth networks could also accelerate more inclusive digital transformations across SID to ensure more equitable access to quality education. Future research could extend this comparative perspective by incorporating empirical data from teachers and learners, which would provide a deeper understanding of how national policies are included in classroom practice. Strengthening international cooperation and knowledge exchanges between developing and developed countries could further enhance digital inclusion for learners with special educational needs.

Although this study did not include primary empirical data, the document-based comparative approach provides a robust analytical framework that guides future field-based research on inclusive digital education.

Conclusion

This study's comparative analysis of digital education inclusion policies in Singapore and Mauritius finds that ICT is now considered vital in advancing inclusive education. However, there were significant differences in their maturity, scope and systematic alignments. Based on its long-term master plans, Singapore's education system has already integrated ICT into its education, provides professional teacher training, and has AT to support learners with specific educational needs. In contrast, Mauritius, while progressing steadily, is in a developmental stage. It has promising national initiatives but is still constrained by limited resources, uneven teacher preparedness and insufficient monitoring mechanisms.

The findings indicate that while both countries recognise ICT as a driver of inclusion, Singapore's success stems from long-term governance alignment and evidence-based monitoring, whereas Mauritius' challenges arise primarily from fragmented implementation rather than lack of intent. This study reveals that the success of inclusive digital education is more than just access to technology or the development of national strategies. Rather, the success depends on the effective integration of technology into pedagogy, teacher competence and classroom culture. Continuous professional development, policy coherence and collaboration between ministries, schools and specialist institutions, such as the Dyslexia Association of Singapore, are critical enablers of equitable learning opportunities. This comparison also reveals that culturally sensitive adaptations are essential; therefore, if transferring the good practices from Singapore to Mauritius, contextual factors, such as infrastructure, teacher support and linguistic diversity, must be considered.

Ultimately, inclusive education in the digital age requires technological innovation and empathy, responsiveness and a commitment to diversity. Our findings suggest that future research should focus on the lived experiences of the students and teachers who are using AT, particularly in SIDS, where inclusive digital transformation has the potential to reduce educational inequalities and promote sustainable development.

While this study is based on a comparative document analysis, to validate and expand on the findings presented here, a follow-up empirical investigation is planned to gather field data from educators in Mauritius and Singapore.

References

Al-Azawei, A., Serenelli, F., & Lundqvist, K. (2016). Universal Design for Learning (UDL): A content analysis of peer-reviewed journal papers from 2012 to 2015. *Journal of the Scholarship of Teaching and Learning*, 16(3), 39-56.

Alvermann, D. E., & Hutchins, R.J. (2012). Adolescents' engagement with digital reading and writing: A critical perspective on technology in literacy education. *Journal of Adolescent & Adult Literacy*, 56(3), 209-213. <https://doi.org/10.1002/JAAL.001>

Bowen, G. A. (2009). Document analysis as a qualitative research method. *Qualitative research Journal*, 9(2), 27-40. <https://doi.org/10.3316/QRJ0902027>

Digital Learning in Primary Schools: Mauritius Making Classrooms Digital (EDLP overview). (2024). *International Journal of Education and Technology (NCERT)*, 14(2), 33–38. <https://journals.ncert.gov.in/IJET/article/download/564/302/995>

Dyslexia Association of Singapore (DAS). (2024). Annual Report.

Dyslexia Association of Singapore (DAS). (n.d.). Main Literacy Programme (MOE-Aided). <https://das.org.sg/services/programmes/main-literacy-programme/>

Dyslexia Association of Singapore. (2024). About our programmes. Retrieved from <https://www.das.org.sg>

Espina, E., Maraban, J. M., & Saez, A. M. (2023). Technological resources for early intervention in cases of dyscalculia: A deductive-inductive categorization. *OBM Neurobiology*, 7(4), Article 191. <https://doi.org/10.21926/obm.neurobiol.2304191>

Human Resource Development Council (HRDC). (2023). ICT Skills Development Programme. Government of Mauritius. <https://hrdc.mu>

Hurreeram, S. L. (2019). Educators' perceptions of tablets in Grade 1 and Grade 2 classrooms in Mauritius: A case study. *South African Journal of Education*.

Institute of Mental Health Singapore (IMH). (2023). Mental Health Education in Schools. <https://www.imh.com.sg>

Ittea, R., Bahadur, G. K., & Goolaub, A. (2022, September). Digital inclusion to support diverse academic needs of learners: Investigating leadership preparedness and challenges in implementing ICT in teaching slow learners in the extended stream of state secondary schools in Mauritius. Paper presented at the Tenth Pan-Commonwealth Forum on Open Learning. <https://doi.org/10.56059/pcf10.474>

Jugee, S., & Santally, M. I. (2016). The Tablet PC initiative in Mauritius: A situational analysis. *International E-Journal of Advances in Education (IJAEDU)*, 2(4), 233–242. <http://ijaedu.ocerintjournals.org>

K. (2024). Transcending the dualities in digital education: A case study of Singapore. *Frontiers of Digital Education*. <https://doi.org/10.1007/s44366-024-0002-2>

Mauritius Institute of Education (MIE). (2023). Towards Inclusive Digital Learning Environments. MIE.

Mauritius Institute of Education (MIE). (n.d.). About MIE. <https://web.mie.ac.mu>

Ministry of Education (MOE). (2022). Inclusive Practices for Mathematics Education. Singapore: MOE.

Ministry of Education and Human Resources, Tertiary Education, Science and Technology. (2015). National Curriculum Framework: Nine- Year Continuous Basic Education. Government of Mauritius.

Ministry of Education Mauritius. (2019). National Strategy for ICT Integration in Education.

Ministry of Education Singapore. (2020). Smart Nation and Education Policy Overview.

Ministry of Education Singapore & GovTech. (n.d.). Student Learning Space (SLS). <https://www.tech.gov.sg/products-and-services/for-citizens/education/student-learning-space/>

Ministry of Education Singapore (MOE). (2023). National Digital Literacy Programme Overview.

Ministry of Education Singapore. (2021). Student Well-Being Framework. <https://www.moe.gov.sg/education-in-sg/student-well-being-framework>

Ministry of Education Singapore. (2023a, Sept 20). Our educational technology journey: ICT-in-Education Masterplan 4 (mp4). <https://www.moe.gov.sg/education-in-sg/educational-technology-journey>

Ministry of Education Singapore. (2023b, Sept 20). EdTech Masterplan 2030. <https://www.moe.gov.sg/education-in-sg/educational-technology-journey/edtech-masterplan>

Ministry of Education Singapore. (2023c). National Digital Literacy Programme (NDLP). <https://www.moe.gov.sg/education-in-sg/educational-technology-journey/edtech-masterplan/digital-literacy-and-technological-skills>

Ministry of Education Singapore. (2023d). Reducing Over-Emphasis on Exams and Scores. <https://www.moe.gov.sg/education-in-sg/reducing-over-emphasis-on-exams>

Ministry of Education Singapore. (2024). Education for students with special educational needs (SEN) in Singapore. Retrieved from <https://www.moe.gov.sg/special-educational-needs>

Ministry of Education Singapore. (n.d.-a). Singapore Student Learning Space (SLS) Info-site. <https://www.learning.moe.edu.sg/>

Ministry of Education Singapore. (n.d.-b). Special educational needs: School support (Parliamentary reply, 14 Oct 2024). <https://www.moe.gov.sg/news/parliamentary-replies/20241014-enhancing-support-for-special-needs-education-and-potential-use-of-assistive-technologies>

Ministry of Education, Tertiary Education, Science and Technology (MoETEST). (2023). Education Statistics Report 2023. Government of Mauritius.

Ministry of Education, Tertiary Education, Science and Technology. (n.d.). Online resources for teaching and learning. <https://govmu.org/EN/infoservices/education/Pages/Online-Resources.aspx>

Ministry of Education, Tertiary Education, Science and Technology, Mauritius. (2023). Education Digital Learning Programme (EDLP).

Natarajan, U. (2021). Reflections on Singapore's ICT Masterplans. The HEAD Foundation Papers. https://headfoundation.org/wp-content/uploads/2020/11/thf-papers_Twenty-years-of-thinking-school-learning-nation-vision_Reflections-on-singapores-ict-masterplan.pdf

National Institute of Education (NIE). (2021, Oct 29). Exploring best ICT practices in Singapore to impact teaching and learning outcomes (LES on ICT in Education). <https://singteach.nie.edu.sg/2021/10/29/les-on-ict-in-education/>

News on Sunday / DefiMedia. (2018, January 24). Tablets for Grade 1 & 2: The era of smart classes in Mauritius. <https://defimedia.info/tablets-grade-1-2-era-smart-classes-mauritius>

OECD. (2022). Digital Education Outlook: Pushing the Frontiers with AI, Blockchain and Robots. OECD Publishing.

Ramen, N. (2022). Investigation into a second attempt at the reintroduction of tablets in the education system of Mauritius: A case study. ResearchGate.

Ramen, N. (2023). Digital inclusion to support diverse academic needs of learners: Investigating leadership preparedness and challenges in implementing ICT in teaching slow learners in the extended stream of state secondary schools in Mauritius. ResearchGate.

Selwyn, N. (2022). Education and Technology: Key Issues and Debates.

SG Enable. (n.d.-a). Assistive Technology Fund (ATF). <https://supportgowhere.life.gov.sg/schemes/ATF/assistive-technology-fund>

SG Enable. (n.d.-b). Assistive technology and IT – Money matters. <https://www.enablingguide.sg/im-looking-for-disability-support/money-matters/assistive-technology-and-it>

Smart Nation and Digital Government Office. (2024). Smart Nation 2.0 Report. <https://file.go.gov.sg/smartnation2-report.pdf>

Tan, C. (2020). Education policy borrowing and digital innovation in Singapore. International Journal of Educational Development, 75, 102183.

UNESCO IITE. (2022). Global Understanding of Smart Education in the Context of Digital Transformation.

UNESCO IITE. (2025, August 29). Inclusive digital education in Mauritius and Rwanda: Project completion note & recommendations. <https://iite.unesco.org/news/unesco-iite-and-chengdu-group-complete-project-on-inclusive-digital-education-in-mauritius-and-rwanda/>

UNESCO Institute for Information Technologies in Education (IITE). (2025). Inclusive Digital Education in Mauritius and Rwanda: Project Completion Note & Recommendations. Toh, Y., & Looi, C.

UNESCO Institute for Information Technologies in Education (IITE). (2021). COVID-19, technology-based education and disability: The case of Mauritius. <https://iite.unesco.org/wp-content/uploads/2021/08/Education-and-disability-The-case-of-Mauritius.pdf>

UNESCO Institute for Information Technologies in Education (IITE). (2025). Inclusive Digital Education in Mauritius and Rwanda: Project Completion Note & Recommendations. <https://iite.unesco.org/news/unesco-iite-and-chengdu-group-complete-project-on-inclusive-digital-education-in-mauritius-and-rwanda>

UNESCO Institute for Statistics (UIS). (2023). ICT Competency Indicators for Teachers – Mauritius Country Snapshot. UNESCO UIS. <https://uis.unesco.org>

UNESCO. (2020). Global Education Monitoring Report: Inclusion and Education. UNESCO Publishing.

UNESCO. (2020). Global Education Monitoring Report: Inclusion and education – All means all.

UNESCO. (2021). COVID-19, technology-based education and disability: The case of Mauritius. Paris: UNESCO International Institute for Educational Planning (IIEP).

UNESCO. (2023). Global education monitoring report 2023: Technology in education—A tool on whose terms? UNESCO Publishing.

UNESCO. (2024). Mauritius – Technology in Education. Education Profiles. <https://education-profiles.org/sub-saharan-africa/mauritius/technology>

UNESCO. (2024). Mauritius—Technology in education. Education Profiles. <https://education-profiles.org/sub-saharan-africa/mauritius/technology>

UNICEF Mauritius. (2022). Supporting Digital Learning and Inclusion during COVID-19. UNICEF Regional Office for Eastern and Southern Africa.

Van Dijk, J. (2020). The Digital Divide.

Veerabudren, S., Kritzinger, A., & Ramasawmy, S. T. (2021). Teachers' perspectives on learners with reading and writing difficulties in mainstream primary schools in Mauritius. South African Journal of Childhood Education, 11 (1), a947. <https://doi.org/10.4102/sajce.v11i1.947>

Veeraragavoodoo, S. (2017). ICT and Inclusive Education in Mauritius: Teacher Perspectives. *Open Learning Journal*, 32(3), 225–238.

World Bank. (2021). EdStats Country Profiles: Mauritius & Singapore.

World Bank. (2023). EdStats Country Data: Mauritius (ICT in Education Indicators).
<https://databank.worldbank.org/source/education-statistics-edstats>

Yong, T. H., Ng, J. S., Loo, S. Y., & Cheong, L. S. (2021). Dyslexic children's experience of home-based learning during school closures: Four case studies. *Asia Pacific Journal of Developmental Differences*, 8(2), 93–111. Dyslexia Association of Singapore.

Core Quality Components in Contemporary Teacher Education Systems

Prof. Jafar Jafarov

*Rector, Azerbaijan State Pedagogical University, Azerbaijan
rector@adpu.edu.az*

Abstract

The rapid digitalisation of education, the expansion of artificial intelligence, and the global shift towards competence-based pedagogies have fundamentally transformed the priorities of modern teacher education systems. This study aims to develop a multi-level analytical framework for evaluating the quality of teacher education by integrating global policy models, national education reforms in Azerbaijan, and institutional practices at Azerbaijan State Pedagogical University (ASPU). A qualitative-analytical research design was employed based on document analysis of international frameworks (OECD, UNESCO, World Bank, ESG, CAEP), national strategic policy documents, and institutional quality assurance instruments at ASPU.

The findings indicate that teacher education quality is shaped through the interaction of five core dimensions: digital competence, research-oriented pedagogy, personalised learning design, outcome-based curricula, and sustainable internal quality assurance mechanisms. At the national level, Azerbaijan's education reforms demonstrate a strong transition towards competence-based governance, professional accountability, and digital transformation. At the institutional level, ASPU operationalises these reforms through PDCA-based quality assurance, STEAM-integrated teacher training, digital learning platforms (LMS, Moodle, virtual laboratories), and multi-criteria academic staff evaluation systems.

The study concludes that digitalisation and AI alone do not guarantee improved teaching quality; their effectiveness depends on institutional culture, leadership capacity, professional development ecosystems, and transparent quality indicators. The ASPU case confirms that future-oriented teacher education requires systemic coherence, strong governance, and a sustained culture of quality.

Keywords: *teacher education, quality assurance, AI, quality components, higher education reform.*

1. Introduction

In the modern era, the rapid digitalisation of education systems, the expansion of artificial intelligence, and the global transformation of learning environments make teacher education a strategic priority. These changes are moving the teaching profession away from its traditional role as a “transmitter of knowledge” toward a new professional identity as a pedagogical designer, data analyst, and organiser of the learning ecosystem, with broader functional responsibilities (OECD, 2019; UNESCO, 2021). The growing attention in the academic literature to the quality of teacher education indicates that digital competence, personalised teaching approaches, research-oriented pedagogy, and outcome-based curricula have become key drivers of transformation in teacher education (López-Núñez et al., 2024; Basilotta-Gómez-Pablos et al., 2022).

Research shows that this transformation is not happening evenly across national education systems. While some countries are making progress in terms of digital infrastructure and quality assurance, others face institutional constraints in implementing the normative framework (World Bank, 2022). This picture suggests that teacher education is shaped not only by pedagogical changes, but also by technological, institutional, and managerial factors.

The article aims to analytically reveal the gaps between global and national policy documents and the actual practices of educational institutions, and, in particular, to present a multi-level model of the quality of contemporary teacher training based on the example of the Azerbaijan State Pedagogical University (ASPU). This model aims to make a new methodological contribution to both academic discourse and educational policy.

2. Aim

The main goal of this study is to systematically analyse the quality components of contemporary teacher training in the context of global trends, national education reforms, and institutional practice. The Hypothesis is that the interaction of global standards, national policies, and institutional reforms creates a multi-level model of teacher education quality.

3. Significance

The scientific and practical significance of this study lies in its reframing of the current discourse on the quality of teacher education with a multi-level analytical approach. Previous studies have typically examined either global trends, national strategies, or institutional practices in isolation. This article integrates these three levels and shows that the quality of teacher education depends not only on pedagogical skills but also on governance mechanisms, digital infrastructure, quality assurance, and institutional culture.

From a scientific perspective, the research strengthens the systems approach to teacher education. It provides a broad theoretical framework for concepts such as digital literacy, AI-based pedagogy, and outcome-oriented curriculum. From a practical perspective, this work advances current transformative directions in Azerbaijani education policy through academic analysis and presents a transferable institutional model based on the ASPU example.

The main innovation of this study is that it explains teacher preparation through an ecosystem approach and shows that quality is shaped not only by normative documents but also by institutional strength, managerial efficiency, and the real application of digital skills. This is a valuable new contribution to both the literature and the policy discourse, as well as to practical teacher preparation.

4. Theoretical framework

In the new twenty-first-century knowledge economy, teacher education has emerged as essential to national development. The Fourth Industrial Revolution, characterised by artificial intelligence, big data, automation, and digital platforms, is not only changing how knowledge is created but also transforming how it is learned and taught. In this new model, the traditional role of the teacher as merely a content transmitter is no longer sufficient. Teachers are more than just facilitators of traditional learning pathways; they are now being recognised as designers of dynamic learning environments, facilitators of personalised learning pathways, and advocates of higher-order thinking, creativity, and lifelong learning (Jafarov, 2016). International organisations consistently emphasise the importance of teacher quality as a school-linked determinant of student achievement, equity, and long-term social progress. OECD (2019) identifies improved early-career teacher preparation and training, and support for early-career teachers, as among the strongest policy tools to improve national education institutions. Similarly, UNESCO's (2021) humanistic education framework positions the teacher as the primary agent of sustainable social development. In contrast, the World Bank (2022) identifies teacher effectiveness as the strongest factor in eliminating "learning poverty" internationally. However, in the present world, teacher quality cannot be reduced to mere content knowledge or traditional pedagogical skills. The recent rapid digital transformation has introduced new layers of professional competence. Digital competence is increasingly a significant aspect of contemporary teachers' professionalism and is evidence-based in its association with teaching effectiveness and student achievement (Basilotta-Gómez-Pablos et al., 2022; Revuelta-Domínguez et al., 2022; López-Núñez et al., 2024). It has been shown that the pedagogically meaningful use of digital tools, learning platforms, and data-informed instruction enhances teaching practices and learning results. Simultaneously, recent scholarship emphasises that the sustainable growth of these skills depends on cohesive institutional strategies rather than fractured professional development efforts. For instance, Trujillo-Juárez et al. (2025) demonstrate that aligning university teachers' digital competence with the DigCompEdu standards significantly contributes to the development of micro-courses and modular professional learning programs. Consistent with this perspective, Betancur-Chicué (2023) provides evidence that microlearning frameworks offer substantial pedagogical benefits for integrating digital tools into university teaching. This implies that digital transformation in teacher education requires long-term, system-wide planning rather than isolated technological initiatives.

In addition to these skills, the current perspective on teacher education quality is viewed as a composite comprising competence-based curriculum development, research-based pedagogy, continuous professional development, and institutional quality assurance systems (López-Núñez et al., 2024; Basilotta-Gómez-Pablos et al., 2022). This shift is likely to lead to a transition from input-based teacher education to outcomes-based, performance-oriented frameworks, with a focus on classroom impact, graduate employability, and a culture of quality.

Many national education systems continue to face inherent challenges in aligning traditional teacher-training practices with contemporary global norms, despite widespread agreement. This issue is particularly severe in rapidly changing and technologically advancing societies. Teacher education reform in Azerbaijan is a cornerstone of enhancing human capital; however, aligning international quality standards with national governance structures, institutional capacities, and labour market expectations remains a challenging and continuously evolving process. In Azerbaijan, academic literature is increasingly framing this concept in terms of quality. Sharifov (2022) provides evidence that staff rating and performance evaluation systems strongly influence the professional behaviour, academic productivity, and pedagogical performance of university professors. In line with this view, Sharifov and

Mammadzade (2022) emphasise that integrative institutional evaluation systems are increasingly important for improving governance efficiency and accountability, and promoting a quality culture in higher education. These studies suggest that the quality of teacher training cannot be separated from overall institutional governance and internal quality improvement frameworks.

At the policy level, digital transformation and teacher qualifications are evident in Azerbaijan's national education strategy, legislation, and laws. The strategic orientation of teacher education is clearly stated in the "State Strategy for the Development of Education in the Republic of Azerbaijan" (President of the Republic of Azerbaijan, 2013), which highlights the enhancement of teacher selection, quality of teacher preparation, continuous professional development, university-school collaboration, and the infusion of new technologies into teaching practice as national priorities. These strategic directions were also consolidated in the "Azerbaijan 2030: National Priorities for Socio-Economic Development" (President of the Republic of Azerbaijan, 2021), which identifies highly qualified human capital, modernisation of the education system, and the establishment of flexible, innovation-driven education systems as important national priorities. Simultaneously, the national teacher certification framework (Cabinet of Ministers of the Republic of Azerbaijan, 2020) has established an organised mechanism for sustaining professional accountability by linking pedagogical competence, measuring and evaluating teachers' performance, and promoting teachers' professional advancement to well-defined, harmonised quality standards. Concurrently, recent curriculum reform, aligned with the competency-based education model, is increasingly focusing on learning outcomes, digital literacy, and interdisciplinary integration. In this policy framework, the conception of teacher education is slowly shifting from fragmented training interventions to a holistic approach to quality development that integrates digital competence, professional ethics, innovative pedagogy, institutional responsibility, and sustainable organisational growth. Despite these developments, the teacher education system in Azerbaijan still faces an intricate structural challenge: harmonising international quality frameworks (OECD, UNESCO, ESG, CAEP) with modern digital-age competencies, long-standing educational traditions, governance mechanisms, and evolving labour-market needs. Without holistic alignment between policy narratives and institutional implementation, there is a risk of systemic fragmentation unless this is addressed through a coordinated, sustained agenda for change. To address this challenge, this study seeks to:

- focus on global trends regarding contemporary teacher education, including digital competence, competence-based pedagogy, research-oriented instruction, and international quality assurance frameworks.
- analyse the reform initiatives in national teacher education in Azerbaijan, focusing on the evaluation mechanisms of institutions, certification processes for teachers, digital transformation procedures, and the growth of quality governance models.
- draw the institutional quality model of Azerbaijan State Pedagogical University (ASPU) as an illustration of system-level alignment of global, national, and institutional standards with national and local strategy and institutional actions, illustrating how internal quality assurance, digital infrastructure, STEAM integration, and school–university partnerships collectively influence the sustainability of teacher education quality.

The article adopts a comprehensive theoretical perspective and integrates international and national institutional investigations to analyse contemporary teacher education practice through a multi-tier framework, which is a coherent, interrelated, multi-faceted, holistic, and systemic quality system and model rather than multiple, isolated practice elements.

Global challenges and emerging trends in contemporary teacher education. Global education systems have undergone profound structural and pedagogical changes over the last decade and a half, driven by technological, social, and economic transformations. Recent studies by the OECD, UNESCO, and the World Bank have demonstrated that new challenges exist for teacher training in the global education context. The OECD's "Future of Education and Skills 2030" conceptual learning framework on student agency (OECD, 2019) suggests that teachers should have not only subject knowledge but also a complex of cognitive, social-emotional, and technological skills. UNESCO's 2021 report "Reimagining our futures together: A new social contract for education" (International Commission on the Futures of Education, 2021) assesses teachers as key actors in social development and highlights the transition to a humanistic educational model. The World Bank's "State of Global Learning Poverty: 2022 Update Conference Edition" policy research working papers (World Bank, 2022) indicate that teacher quality is the most important determinant of student achievement. The common conclusion of these reports is as follows:

The contemporary profile of the teacher extends far beyond the traditional function of instruction. The modern teacher must design effective learning environments, understand educational data, meet the needs of individual learners, and integrate digital technologies intentionally into pedagogical practice. This is an educational

revolution: it is not about the transmission of subject knowledge as it used to be, but about creating and planning a learning context during instruction. The modern teacher:

- analyses the arguments presented by students,
- guides them to work with various information sources,
- forms a culture of questioning,
- investigates multi-stage, complex problems together with the student.

According to UNESCO's ICT Competency Framework for Teachers (2018), digital literacy is no longer perceived merely as a set of technical skills; instead, it is conceptualised as an integral pedagogical competence embedded in modern teaching and learning practices.

A contemporary teacher also needs to be able to embed digital resources into lesson planning, support the development of visualisation, simulation, and interactive learning environments, enhance students' digital competence, and lead e-learning workflows. Modern educational contexts are shifting towards a hybrid instructional model, in which learning occurs in both conventional classroom settings and digital environments. Teachers play a dual role, providing quality instruction both in person and online. Under UNESCO's 2030 vision for education, rigid, uniform teaching models must be replaced with flexible models that are responsive to learners' varied abilities and needs (Jafarov, 2019). Under these circumstances, personalised teaching involves teacher-led, systematic diagnosis of students' prior knowledge, interests, and developmental paths, and the purposeful planning and delivery of learning tasks, resources, and projects aligned with a particular level of knowledge. Such a method not only supports students' autonomy in decision-making but also supports different learning styles.

At the same time, recent advances in generative artificial intelligence have begun to reshape educational practices at multiple levels. As highlighted by the World Bank's analytical report on artificial intelligence in education (Molina et al., 2024), AI-based systems are increasingly shaping instructional design, assessment practices, and teacher professional development. Review identifies four primary areas of impact of AI for teachers:

1. AI as a "mentor" for teachers,
2. AI-based feedback for professional development,
3. Support for lesson plans/content creation,
4. Automation of administrative routines.

Therefore, today's reality is that artificial intelligence can help the 21st-century teacher:

- to design tests and assignments,
- create differentiated resources,
- prepare a lesson plan and a process implementation mechanism,
- creating visual aids and simulations for the lesson,
- analyse the quality of lessons with analytical reports provided by artificial intelligence,
- to improve their methodology,
- It saves the teacher's valuable time by supporting them in tasks such as following international methodological trends, etc. This reduces the teacher's resource fatigue and allows them to focus on more creative processes.

Another interesting aspect of the teaching and learning process is artificial intelligence for learners:

- facilitates individual learning,
- plays a guiding role in strengthening weak skills,
- gives suggestions, new ideas,
- summarises the lesson material, etc.

AI does not replace the teacher; rather, it strengthens, enhances, and deepens the teacher's effectiveness and analytical capacity.

These global trends indicate that teaching is no longer merely a profession; it is among the most strategic in the modern world. The central driving force behind this transformation is the standard of teacher preparation itself. One of the most critical challenges currently confronting global education systems is the growing shortage of well-qualified teachers. This challenge is no longer confined to developing regions alone but has become increasingly pressing for countries with advanced economic structures, including members of the OECD and the European Union.

It is sometimes argued that the teaching profession is no longer as attractive to young people as it once was in the global labour market. This is due to factors such as the digital sector's attraction of young people with higher salaries and flexible working hours, the high emotional burden and stress of teaching, the increasing public expectations of the education system, and the further complexity of the teaching process following the pandemic. This reality is now a key strategic issue determining the future of education.

For this reason, contemporary teacher education increasingly prioritises STEM-based instructional methodologies, the use of digital laboratory environments, and the pedagogical integration of simulation technologies, coding, and robotics. In parallel, modern teachers are expected to cultivate students' problem-solving abilities, project-based learning competencies, and research skills, which collectively foster essential 21st-century competencies. This also indicates that teachers with STEM competencies are becoming the most strategic cadre in teacher training worldwide.

The global teacher shortage trend and the radical transformation of the teacher image show that:

- The teaching profession needs to be redesigned,
- teacher training should be based on new skills,
- university-school cooperation should be further strengthened,
- The modern teacher profile should be digital, integrative, and research-oriented.

In this context, curriculum innovation, quality assurance, research orientation, and digital transformation, in light of ASPU's reforms to teacher training, align with the country's strategic needs.

In modern times, quality assurance in teacher training is no longer just an internal control procedure, but also a key indicator of international competitiveness. When we consider reforms implemented worldwide, three major trends stand out.

Today, the assessment of the quality of pedagogical education programs has gone beyond the classic "document review" approach.

The standards put forward by international organisations, especially the EU ESG (European Standards and Guidelines), the CAEP (Council for the Accreditation of Educator Preparation), which evaluates teacher training in the United States, and the YÖKAK (Higher Education Quality Council), which is the leading institution for quality assurance in higher education in Turkey, show that:

- Universities should not just have a curriculum, but also think about and implement how the curriculum works;
- Realistic measurement of learning outcomes is required in teacher training.
- Assessment of students' practical training based on specific indicators has become a key requirement.
- educational institutions must demonstrate a functioning mechanism for continuous improvement of their systems;
- Graduate employment rates, feedback from school principals and mentors are now accepted as objective evidence in accreditation.

The ESG (European Standards and Guidelines) standards emphasise that quality in higher education is not only about the outcome, but also about ensuring transparency in the process.

The new standards of the Higher Education Commission of Azerbaijan are grounded in strategic management, internal quality culture, and internationalisation. These trends indicate that teacher training has become part of a global accreditation system rather than a national one.

Thus, quality assurance in teacher training in the world is formed in three main centres:

1. International harmonisation of accreditation standards;
2. Practical training based on university-school integration;
3. Flexible and competency-based curriculum design.

Universities that implement these three trends not only produce high-quality teachers but also establish themselves as competitive institutional actors in the global education space.

National reforms in teacher education in Azerbaijan: policy, certification, and curriculum innovation. Azerbaijan is among the countries that have implemented large-scale reforms in its education system over the past decade. Against the backdrop of globalisation, digital transformation, and changing labour-market demands, teacher training has become a strategic priority of state policy.

The work undertaken is presented across four main areas: strategic documents and the regulatory framework; educational reforms implemented in 2021-2026; the teacher recruitment and certification system; and curriculum reforms.

The approach to teacher training in the Republic of Azerbaijan has been shaped in recent years not only in the field of education, but also as an integral part of the country's long-term socio-economic development strategy. Several fundamental documents have established a conceptual framework for improving the quality of teacher training.

The "State Strategy for the Development of Education in the Republic of Azerbaijan", approved by the Decree of the President of the Republic of Azerbaijan dated October 24, 2013, proposes a new model in teacher training and identifies five critical priorities:

1. Improving the quality of teacher selection and training;
2. Creation of a system of continuous development of pedagogical staff;
3. Strengthening university-school cooperation;
4. Improving assessment and certification mechanisms;
5. Application of technology and innovation in education.

This document emphasises that the quality of pedagogical education is shaped not only in higher education institutions but also at the ecosystem level, through interactions among schools, the ministry, universities, and society.

The document "Azerbaijan 2030: National Priorities for Socio-Economic Development", approved by the Decree of the President of the Republic of Azerbaijan dated February 2, 2021, characterises teacher training as one of the main pillars of the development of the country's human capital (President of the Republic of Azerbaijan, 2021). Two important directions stand out here:

1. Enriching the educational process with modern technologies,
2. Formation of a competitive, flexible and creative teacher training system.

The content of teacher training in the Education Law was reframed around the principle of "competency-based pedagogical training". These changes include:

- phasing of teachers' professional development,
- strengthening practical components,
- shifting the educational process towards results-oriented instruction.

A new stage of teacher training began in Azerbaijan in 2021. These reforms are grounded in the principles of international benchmarking, digital transformation, and the strengthening of human capital.

As a result of changes made in the last 3 years, the admission score for pedagogical specialities has increased, and the share of experience-based learning has increased.

The digital infrastructure in teacher training in Azerbaijan has been significantly strengthened, especially with the widespread implementation of the "Digital Skills" project, the creation of virtual laboratories, the integration of hybrid and online lesson design into pedagogical training, and the use of electronic assessment platforms, which have given a serious impetus to improving quality in this area.

Certification is one of the primary mechanisms for quality assurance in Azerbaijani education. It is implemented in accordance with the Rules approved by the Cabinet of Ministers Resolution No. 155 dated April 30, 2020 (Cabinet of Ministers of the Republic of Azerbaijan, 2020). The purpose of certification is to objectively assess teachers' pedagogical and methodological skills, stimulate their continuous professional development, and foster quality-based human resource management in schools. This model aligns with international practice and ultimately increases transparency, strengthens the culture of professional development, and establishes uniform standards for teacher activities.

Azerbaijan's general education system has transitioned to a curriculum-based approach since 2006, and in recent years, further steps have been taken to adapt it to contemporary requirements.

Dear colleagues, these reforms place greater responsibility on higher education institutions, including a specific mission for the Azerbaijan State University of Education, which is the leading university in training pedagogical personnel in our country.

Institutional implementation of teacher education quality at ASPU: digital transformation, quality assurance, and research-oriented training. ASPU is a higher education institution with a history of 104 years. This university, which began operations in 1921 with several faculties and a small number of teachers, quickly became a leading centre for pedagogical education in the country. Against the backdrop of the ideological and political changes of the 20th century, ASPU remained a fulcrum for the training of pedagogical personnel and continues that mission with honour today.

Today, the vast majority of teachers working across the country are graduates of the Azerbaijan State University of Education. The 100,000 teachers who graduated from the university over the past century constitute the main human capital of the Azerbaijani education system. Teachers who hold children's first textbooks in their hands, leading school principals of the country, academicians and scientists were formed in the scientific and pedagogical environment of the Azerbaijan State University of Education.

The importance of ASPU to national education lies in its role in training teachers and educating individuals who shape society's future. In this sense, each ASPU graduate is a key contributor to the country's intellectual security and sustainable development.

ASPU maintains its status as the country's leading teacher-training university not only through its historical traditions but also through a modern management model, innovative approaches, and adaptation to new-generation pedagogical technologies. In addition, ASPU is no longer merely a "teacher training university" but a leading force in innovation, research, and a culture of quality in modern education.

In the 21st century, a teacher's digital skills are integral to their professionalism. ASPU has taken the most advanced steps in this direction:

- The e-learning platform has been expanded, and the LMS system and MOODLE platform are actively used for all teachers and students.
- Virtual laboratories for physics, chemistry, biology, and STEAM have been put into operation.

One of the most critical reforms at ASPU is the restructuring of the quality assurance system. The university now has an internal quality system based on the PDCA cycle (Plan – defining strategic goals; Do – implementing activities; Check – monitoring and evaluating; Act – implementing corrective actions). In this context:

- A 3-year tracer study is being conducted on graduates.
- Multi-criteria evaluation of teacher performance is applied in all faculties.
- Student satisfaction surveys regarding the teaching process are conducted, and the results are presented to the faculty.
- The annual activity plans of the structures are measured with objective indicators.

As a result, the quality culture at ASPU has now become a systematic mechanism.

In recent years, internationalisation has become a priority for ASPU:

- Erasmus+, Mevlana, and DAAD (German Academic Exchange Service) projects have expanded.
- Cooperation with institutions such as YÖKAK and TAKTA (Agency for Quality Assurance in Education) has been further strengthened.
- The number of foreign professors and joint seminars has increased.
- Students' access to internships abroad has been increased.

5. Literature Review

Teachers' digital competence, modern teacher training models, and the transformation of global education policies have become major topics in academic discourse in recent years. The literature indicates that digital competence is a multidimensional concept that encompasses not only technological knowledge but also pedagogical innovation, research skills, and curriculum design (Basilotta-Gómez-Pablos et al., 2022; López-Núñez et al., 2024). Several systematic reviews show that there is no single model for assessing teachers' digital competence and that approaches vary significantly between countries and higher education institutions (Domínguez-González et al., 2025; Karimi & Khawaja, 2025).

Analyses by international organisations such as UNESCO and OECD present digital transformation as one of the main pillars of teacher preparation and formulate frameworks that integrate the social, cognitive, ethical and technical components of teacher competencies (International Commission on the Futures of Education, 2021; UNESCO, 2018; OECD, 2019). Recent World Bank reports highlight the impact of digital inequality and teacher competency gaps on learning outcomes and underscore the importance of structural reforms for developing countries (World Bank, 2022).

Other studies have examined the impact of digital competence on pedagogical outcomes and have shown that when teachers have high digital skills, students' academic self-confidence, engagement in learning, and self-regulation significantly increase (Luo et al., 2025). Microlearning and microcourses are emerging, flexible approaches to developing teachers' digital readiness and are widely used, particularly in higher education (Betancur-Chicué, 2023; Trujillo-Juárez et al., 2025).

Research conducted in the Azerbaijani context shows that national curriculum reforms, "Azerbaijan 2030" priorities, and teacher certification regulations support the transition to competency-based models. However, at the institutional level, problems include uneven implementation of quality assurance mechanisms, resource shortages, and the formal nature of pedagogical innovations (Sharifov, 2022). This creates gaps between global standards and national realities.

Overall, the literature shows three main results:

1. There is no single standard for defining and measuring digital literacy. Different countries use different assessment approaches.
2. Although digital transformation has a positive impact on pedagogical outcomes, for this, institutional support and sustainable development opportunities are crucial.
3. There is a lag between global policy documents and national-level implementation, especially in developing countries.

While the existing literature extensively describes global digital competency models, there is little research that systematically examines their integration with national reforms and university-level quality assurance mechanisms. There is a lack of empirical or conceptual research on how the implementation of global standards interacts with real-world institutional dynamics, particularly in pedagogically oriented higher education institutions such as ASPU. This article fills this gap by presenting an integrative model that links the global, national, and institutional levels.

6. Methodology

This study uses a complex, multi-level methodological framework to explain the formation of the contemporary teacher training system at the global, national, and institutional levels. The methodology combines the systematisation of theoretical concepts with the empirical, material analysis of policy and structural reforms implemented in the Azerbaijani education system over the past decade. The structure of the study covers the following analytical directions:

The study is of a theoretical-constructive nature, grounded in a qualitative, conceptual-analytical framework. The model is built on a three-level analysis structure:

1. Global level– Normative models and recommendations on teacher training from organisations such as OECD, UNESCO, and the World Bank are examined; international trends, digital transformation, and contemporary theoretical approaches to the competency-based teacher profile are summarised.
2. National level– The normative framework for teacher training in the Republic of Azerbaijan, including legislation, state strategies, certification and curriculum policies, institutional reforms, and digital transformation, is systematically analysed.
3. Institutional level– The governance model, digital transformation, STEAM integration, internal quality assurance, and structural components of teacher training implemented by the Azerbaijan State Pedagogical University (ASPU) in recent years are examined; the university example is used as an analytical framework that illustrates a practical implementation model of national policy.

The research data sources consist of four categories:

1. International documents and analytical reports: Documents such as OECD (2019), UNESCO (International Commission on the Futures of Education, 2021; UNESCO ICT-CFT), World Bank's "The State of Global Learning Poverty" (2022) and "AI in Education" (Molina et al., 2024) have been the primary sources of information for identifying global trends in modern teacher training.
2. Academic literature: International studies published in the last 5 years on teachers' digital competencies, microlearning, digital transformation and quality assurance in higher education were analysed (Basilotta-Gómez-Pablos et al., 2022; Betancur-Chicué, 2023; López-Núñez et al., 2024; Trujillo-Juárez et al., 2025, etc.).
3. National normative documents: Education Strategy (President of the Republic of Azerbaijan, 2013), the National priorities (President of the Republic of Azerbaijan, 2021), the Certification Rules (Cabinet of Ministers of the Republic of Azerbaijan, 2020), and the Curriculum Frameworks (Cabinet of Ministers of

the Republic of Azerbaijan, 2010) and other state documents were used to determine the national conceptual foundations of teacher training.

4. Institutional data on ASPU: Data on the university's structural reforms, implementation of digital platforms, internal assessment system, STEAM projects, international cooperation, and teacher performance monitoring served as the basis for the analysis of the institutional model.

The following methods were used in the study:

1. Document Analysis: More than 60 strategic documents, reports, legal acts, and academic sources on teacher education at the global, national, and institutional levels were systematically analysed.
2. Thematic Content Analysis: Thematic coding was conducted on conceptual categories extracted from the obtained texts - digital literacy, quality assurance, pedagogical competence, certification, university-school cooperation, outcome-oriented curriculum, etc.
3. Comparative analysis: The ASPU model was compared with international quality standards (ESG, CAEP, UNESCO ICT-CFT), and areas of compliance, gaps, and development directions were analytically identified.
4. Institutional assessment framework: ASPU's PDCA-based internal quality assurance system, teacher performance evaluation, implementation of digital platforms, and establishment of the STEAM model were examined through institutional analysis.

Since this study does not aim to collect extensive empirical data, its main limitation is its theoretical and documentary orientation. However, the study aims to systematise and present an analytical model of the relationship among global policy trends, national strategies, and institutional reforms, rather than to conduct empirical measurement. Therefore, the methodological limitation does not hinder the study's purpose but rather strengthens the conceptual explanation of the problem.

This methodological framework enables us to bridge the gap between global normative trends and national policy and institutional practices, while accounting for the multilevel and multifactorial nature of the teacher training system. Based on the synthesis of the presented approaches, the author builds an integrative quality model for contemporary teacher training and presents the ASPU example as a practical application of this model.

7. Findings & Discussion

The study's results indicate that the modern teacher training system is rapidly transforming globally, and these changes are also reflected in the institutional development of the Azerbaijani education system and ASPU. The study reveals close interactions between international documents and academic sources (Basilotta-Gómez-Pablos et al., 2022; López-Núñez et al., 2024; Trujillo-Juárez et al., 2025), as well as reforms at the national and institutional levels.

Reports from international organisations indicate that the teaching profession is shifting away from the traditional framework toward a digital, design-oriented, and research-based model. The approaches of UNESCO, OECD and the World Bank highlight three strategic lines in teacher training:

- Digital pedagogy – the ability to use technology in a purposeful, pedagogical way.
- Personalised learning – adaptation to the student's individual development trajectory.
- AI-assisted teaching – artificial intelligence ecosystems that reduce teacher workload and expand their creative possibilities.

These global changes are summarised in Table 1.

Table 1. Global contemporary teacher training trends

Global direction	Description	Mechanism of action
Digital literacy	The teacher's ability to apply technology for pedagogical purposes	Lesson planning, teaching on digital platforms, and online assessment
AI-based teaching support	Artificial intelligence helps teachers with planning, assessment, and differentiation.	Reduced workload, more opportunity for creative activity
Personalised training design	Teaching adapted to the student's knowledge level and learning style	Increased student agency and motivation to learn
Research-oriented pedagogy	The teacher's application of inquiry-based and problem-solving-oriented learning	Developing critical thinking and 21st-century skills
Hybrid teaching models	Integration of traditional and online forms of education	Lesson-design flexibility and resource expansion

Global trends indicate that teacher education is no longer merely a knowledge-transfer process but a multi-layered professional ecosystem that integrates digital competence, AI support, personalised learning, and research-driven pedagogy. Each of these directions expands the teacher's role, making them a key agent of transformation who extends beyond the classroom, fosters innovation, and strategically directs the learning environment.

The analysis shows that national documents – Education Strategy (President of the Republic of Azerbaijan, 2013), the National priorities (President of the Republic of Azerbaijan, 2021), and the Certification Rules (Cabinet of Ministers of the Republic of Azerbaijan, 2020) and curriculum reforms (Cabinet of Ministers of the Republic of Azerbaijan, 2010) – reframe teacher training with a systems approach. The main lines of the national model are as follows:

- Competency-based training – result-oriented pedagogical preparation.
- Certification and objective assessment – strengthening the professional responsibility of teachers.
- Expansion of digital infrastructure – “Digital skills”, virtual laboratories.
- University-school integration – real practice-based training.

These trends are shown more clearly in Table 2.

Table 2. National policy framework for teacher training in Azerbaijan

Policy component	Main content	Expected impact
Education Strategy (President of the Republic of Azerbaijan, 2013)	Quality in teacher training, selection mechanisms, and modernisation of training	Strengthening teacher selection and efficiency in the preparation process
National priorities (President of the Republic of Azerbaijan, 2021)	Human capital, innovation, digital transformation	Adapting teacher training to the labour market
Certification (Cabinet of Ministers of the Republic of Azerbaijan, 2020)	Objective assessment of professional activity	Increasing teachers' responsibility and motivation
Curriculum reform (Cabinet of Ministers of the Republic of Azerbaijan, 2010)	Results-oriented, digital and research-based training	Development of modern pedagogical skills
Digital Development Concept (President of the Republic of Azerbaijan, 2025)	Virtual labs, LMS, and online assessment	Systematic application of digital pedagogy

These findings indicate that national policy is aligned with global trends and that a quality-centred teacher training model is emerging.

An analysis of the institutional reforms carried out at ASPU shows that a systematic quality model has been formed along three strategic lines:

1. Development of pedagogical and digital competencies: STEAM centres develop both methodological and innovative skills of students.
2. Internal quality assurance system: Reality-oriented mechanisms based on the PDCA model – teacher performance evaluation, student satisfaction, and monitoring.
3. Innovation and internationalisation
Programs such as Erasmus+, Mevlana, and DAAD strengthen the university's integration into the global educational space.

The main components of ASPU's institutional model are summarised in Table 3.

Table 3. ASPU's institutional quality model

Quality component	Application at ASPU	Compatibility with strategy
Pedagogical competence	TRE trainings, methodological seminars	Education Strategy – Modernisation of Teacher Training
Digital literacy	LMS, MOODLE, virtual laboratories	Azerbaijan 2030 – digital transformation
STEAM and project-based learning	Interdisciplinary learning through the STEAM centre	Global Trends – 21st Century Skills
Academic performance assessment	Rating system, Scopus support program	ESG – transparency and results orientation
Quality assurance system	PDCA cycle, internal monitoring	Compliance with accreditation criteria

International cooperation	Erasmus+, foreign internship programs	Global harmonisation and institutional development
---------------------------	---------------------------------------	--

The analysis shows that the modern teacher training system is no longer a single-level or curriculum-oriented process. On the contrary, this system has been established as a multi-level ecosystem that develops in parallel, complements, and interacts at the global, national, and institutional levels. The harmonious functioning of this ecosystem becomes one of the most important factors determining the quality of teacher training.

Analysis of global models indicates that digital literacy, personalised teaching methodologies, and the integration of artificial intelligence into pedagogical practice are defining new standards for the teaching profession across the world's leading education systems. The modern teacher is no longer merely a transmitter of knowledge; they serve as a lesson designer, data analyst, organiser of learning environments, and pedagogical adapter of technological innovations. The conceptual frameworks of organisations such as UNESCO and OECD establish this new role of the teacher as a normative standard on a global scale.

At the national level, Azerbaijan's education policy provides a strategic basis for implementing these global standards. The Education Strategy (President of the Republic of Azerbaijan, 2013), the National priorities (President of the Republic of Azerbaijan, 2021), and the Certification Rules (Cabinet of Ministers of the Republic of Azerbaijan, 2020) constitute a unified quality vision for teacher training and place digitalisation, a competency-based curriculum, and objective assessment mechanisms at the centre of state policy. Thus, global trends are systematically reflected in national legislation and integrated into the education ecosystem. This process demonstrates that Azerbaijan is not only adapting to teacher training but also developing a sustainable policy framework consistent with international standards.

At the institutional level, ASPU presents the most complete practical model of this policy. The PDCA-based quality assurance system, digital learning platforms, STEAM centre, methodological training, rating and performance assessment mechanisms, and international cooperation programs implemented by the university demonstrate that the goals set in national policy documents are being translated into practice. The reforms implemented at ASPU strengthen both the culture of innovation in teacher training and the efficiency of academic management, thereby turning the university into an institution that plays a strategic role in the country's educational ecosystem.

Determining the quality indicators for teacher training and integrating them into the teaching process have become strategic priorities in higher education.

The main components that determine the quality of modern teacher training cover several strategic directions. These include the development of professional-pedagogical competencies; the acquisition of innovative and digital teaching skills; the creation of an interdisciplinary, research-oriented learning environment; internal quality assurance and objective assessment of academic performance; and systematic monitoring of graduate employment indicators. Each component determines both the content and outcomes of the teacher training process and forms the strategic development line of higher education institutions in this area.

The 1st component is the formation of professional and pedagogical competencies. A modern teacher, in addition to having in-depth knowledge of his subject, must also master the methods and psychology of teaching. The Training and Education Centre at ASPU operates in this direction. The centre organises regular training to develop the pedagogical, methodological, and digital skills of university teachers. Teachers participating in these training sessions learn to apply new teaching technologies, assessment methods, and modern lesson models, such as the 7E and 5E models. As a result, teachers demonstrate more innovative, student-oriented approaches in the training process.

The 2nd component is digital and innovative teaching skills. The STEAM Centre, operating in this direction at ASPU, aims to develop interdisciplinary thinking among students and to encourage learning through practical projects that combine physics, mathematics, engineering, art, and technology. Thanks to this centre, future teachers are armed not only with theoretical knowledge but also with project-based teaching skills. This also serves the development of "creativity and problem-solving skills", which is one of the quality indicators.

The 3rd component is an objective assessment of teacher performance. For several years, ASPU has used a teacher rating system based on specific indicators across pedagogical, research, and social domains. Through this system, a healthy competitive environment is formed among teachers, and the dynamics of their professional development are continuously stimulated. The rating results affect the university's personnel policy and, at the same time, increase academic staff's motivation for self-development. In addition, to stimulate scientific activity, teachers

receive financial rewards for articles published in the Scopus and Web of Science databases. This initiative has increased scientific productivity and enhanced the university's international image.

The 4th component is international cooperation and exchange of experience. In this regard, ASPU has established cooperative relations with several foreign universities. Teachers and doctoral students participate in internship programs at universities in Turkey, Denmark, Poland, Germany, Lithuania and other countries. This international experience creates conditions for integrating new approaches into the country's education at both the methodological and academic levels.

The 5th component reflects graduates' employment levels and their success in professional activities. In this regard, the university has monitored graduates over the past three years and conducted specific analyses. Thus, in recent years, the percentage of ASPU graduates employed in educational institutions has increased significantly. This finding indicates that the university's educational programs are aligned with labour-market requirements and that the teacher-training system delivers measurable results.

The 6th component is the formation of an internal quality culture. The measures implemented in this direction at ASPU, including monitoring the educational process, conducting student surveys, and preparing pre-accreditation self-assessment reports, are continuously being developed at the university under the PDCA (Plan, Do, Check, and Act) principle.

Modern teacher training cannot be limited to traditional theoretical knowledge. For this reason, a curriculum reform at ASPU was conducted in two directions:

The first direction is a new competency-based curriculum. All curricula have been updated in line with the competency model. In addition, the program for first-year master's students in the "Pedagogy" speciality has been fundamentally changed and redesigned in accordance with labour-market requirements since 2025.

The second direction is adaptation to international standards. The programs have been adapted to ESG requirements. Structural changes have been made in accordance with the Higher Education Commission's accreditation criteria and the TTKA. Internal and external experts have evaluated some ASPU programs through peer review. The main factor determining the quality of teacher training is real school experience. We have made significant breakthroughs in this direction over the last three years. Thus, cooperation agreements have been signed with more than 100 schools in Baku and the regions.

Overall, the parallel development of these three levels indicates that modern teacher training is no longer limited to curricular content. The concept of quality requires the formation of a digital ecosystem, the efficiency of management processes, and the creation of a culture of continuous development grounded in performance indicators. Thus, teacher training has become a multi-level, interactive and dynamic ecosystem. In this ecosystem, innovation, digital transformation, management, and quality assurance converge to shape the future profile of teachers.

Conclusion

The findings of this study show that global teacher education is no longer driven solely by isolated pedagogical reforms, but by complex power interactions between technology, policy, institutions, and human capital. While digital tools are often seen as neutral and democratic, and teacher education reforms are frequently viewed as universally promoting equality, this research indicates that the landscape of teacher education is far from level. The same international standards, national governance mechanisms, and institutional capacities do not work at the same pace worldwide. The ASPU institutional model shows that, to be fully aligned with global systems such as ESG and UNESCO, formal compliance cannot be achieved without fundamental structural change, dedicated leadership, and a sustainable internal culture of quality. Without these elements, international frameworks risk becoming merely symbolic rather than truly transformative.

Notably, the study's multi-tiered methodological framework—combining global document analysis, thematic coding of national reform policies, and institutional-level evaluation—demonstrated that quality in teacher education arises from the interplay of structural forces rather than from standalone interventions. The comparison of these layers revealed that meaningful transformation depends not only on the presence of standards but also on the institutional capacity to interpret, adapt, and operationalise them within specific sociocultural contexts. This methodological insight reinforces that reforms become effective only when they are translated into institutional practice through coherent governance and continuous quality assurance.

The study further indicates that digitalisation and artificial intelligence do not automatically ensure pedagogical equity. Conversely, teachers and institutions that lack digital skills, research-oriented abilities, and institutional support are increasingly marginalised within the evolving educational landscape. Like online communication, teacher education today reveals the underlying hierarchies of competence, access, and institutional influence. While digital platforms strengthen the capabilities of the already privileged, they expose the structural deficits of teachers and institutions undertaking this transformation in the absence of appropriate scaffolding, training, and safeguards. The real question is not so much whether there is digital transformation as who gains from it and under what institutional circumstances. As such, this study confirms that national reforms in Azerbaijan are a landmark step towards competency-based teacher training, certification-focused professional accountability, and improved digital infrastructure. However, the effectiveness of such reforms remains contingent on the institutional mechanisms which bring state policy into day-to-day academic practice. ASPU's internal quality assurance model, based on PDCA cycles, multi-criteria staff evaluation, graduate tracer studies, and international benchmarking, shows that quality is not achieved solely through regulation, but through ongoing institutional reflection. Without such mechanisms, certification risks becoming merely procedural, curriculum reform may turn formalistic, and digitalisation may remain superficial.

A key implication of this research is that teacher education cannot be designed solely as a technical system. It is inherently a social, cultural, and institutional process influenced by power relations, professional identities, and organisational cultures. The modern teacher is expected to be digital, reflective, research-oriented, ethically responsible, and adaptable. However, expecting such an ideal without robust institutional support systems in place fosters structural inequality within the profession. Therefore, institutions have an ethical duty not only to demand performance based on outcomes but also to create protective academic environments that enable teachers to develop into these complex professional roles.

Finally, this study challenges the myth that contemporary teacher education reforms automatically lead to democratic, equitable, and universally effective learning systems. Equal participation, high-quality teaching, and sustainable professional learning require well-planned, well-defined institutional rules, transparent quality indicators, and long-term investment in academic cultures. The ASPU case demonstrates that when global standards, national reforms, and institutional governance collaborate, teacher education is not only a training apparatus but an intelligent, strategically integrated, sound ecology of quality. Such an ecosystem model offers a transferable framework for other countries seeking to harmonise global teacher education standards with national priorities and institutional realities in the age of artificial intelligence and digital transformation.

References

Basilotta-Gómez-Pablos, V., Matarranz, M., Casado-Aranda, L.-A., & Otto, A. (2022). *Teachers' digital competencies in higher education: A systematic literature review*. International Journal of Educational Technology in Higher Education, 19(8). <https://doi.org/10.1186/s41239-021-00312-8>

Betancur-Chicué, V., García-Valcárcel Muñoz-Repiso, A. (2023). *Microlearning for the Development of Teachers' Digital Competence Related to Feedback and Decision Making*. Education Sciences, 13(7), 722. <https://doi.org/10.3390/educsci13070722>

Cabinet of Ministers of the Republic of Azerbaijan. (2010, June 3). *Decision No. 103 on the approval of state standards for general education in the Republic of Azerbaijan*. <https://e-qanun.az/framework/19682>

Cabinet of Ministers of the Republic of Azerbaijan. (2020). *Decision No. 155 of 30 April 2020 on amendments to the Rules for the Certification of Educators working in state general education institutions*. Cabinet of Ministers of the Republic of Azerbaijan. <https://e-qanun.az/framework/55630>

Domínguez-González, F. A., Ramos-Soto, A., & Muñoz-Rodríguez, J. M. (2025). *Teacher digital competence: Keys for an educational future through a systematic review*. Contemporary Educational Technology, 17(2), Article 16168. <https://doi.org/10.30935/cedtech/16168>

International Commission on the Futures of Education. (2021). *Reimagining our futures together: A new social contract for education*. UNESCO. <https://doi.org/10.54675/ASRB4722>

Jafarov, J. (2016). *Teacher education: Our goals and strategic objectives*. Azerbaijan School, (5), 15–24. [in Azerbaijani] https://ia902802.us.archive.org/11/items/AJES2017No4/AJES_2016%20no%205.pdf

Jafarov, J. (2019). *The future teacher in the context of modernity*. History, Human and Society, 1(24), 3–11. [in Azerbaijani] https://adpu.edu.az/images/adpu_files/elm/elm-jurnallar/03tic/tic-1-2019.pdf

Karimi, H., & Khawaja, S. (2025). *Exploring digital competence among higher education teachers: A systematic review*. International Journal of Learning, Teaching and Educational Research, 24(1), 257–276. <https://doi.org/10.26803/ijlter.24.1.15>

López-Núñez, J.-A., Alonso-García, S., Berral-Ortiz, B., Victoria-Maldonado, J.-J. (2024). *A Systematic Review of Digital Competence Evaluation in Higher Education*. Education Sciences, 14(11), 1181. <https://doi.org/10.3390/educsci14111181>

Luo, R., Husnin, H., Zaini, M. (2025). *A systematic review of teachers' digital competence and its effect on students' academic self-efficacy, learning engagement and other outcomes*. Environment and Social Psychology. 10(9), 1–25. <https://doi.org/10.59429/esp.v10i9.4082>.

Molina, E., Cobo, C., Pineda, J., & Rovner, H. (2024). *AI revolution in education: What you need to know*. In Digital Innovations in Education. World Bank. <https://documents1.worldbank.org/cu-rated/en/099734306182493324/pdf/IDU152823b13109c514ebd19c241a289470b6902.pdf>

Moreira, J. A., Nunes, C. S., Casanova, D. (2023). Digital Competence of Higher Education Teachers at a Distance Learning University in Portugal. Computers, 12(9), 169. <https://doi.org/10.3390/computers12090169>

OECD. (2019). *Student agency for 2030* [Concept note]. OECD. https://www.oecd.org/content/dam/oecd/en/about/projects/edu/education-2040/concept-notes/Student_Agency_for_2030_concept_note.pdf

President of the Republic of Azerbaijan. (2013, October 24). *State Strategy on the development of education in the Republic of Azerbaijan*. <https://president.az/az/articles/view/9779>

President of the Republic of Azerbaijan. (2021, February 2). *Azerbaijan 2030: National priorities for socio-economic development*. <https://president.az/articles/50474>

President of the Republic of Azerbaijan. (2025, January 16). *Digital Development Concept of the Republic of Azerbaijan* (Order No. 287). <https://e-qanun.az/framework/58765>

Revuelta-Domínguez, F., Guerra-Antequera, J., González-Pérez, A., Pedrera-Rodríguez, M., González-Fernández, A. (2022). *Digital Teaching Competence: A Systematic Review*. Sustainability, 14(11), 6428. <https://doi.org/10.3390/su14116428>

Sharifov, G. (2022). *The impact of rating-based evaluation on the professional performance of university faculty members* [in Azerbaijani]. Azerbaijan School, 3(700), 11–20. <https://as-journal.edu.az/retyinq-qiyim%C6%8Ft%C6%8Fndirm%C6%8Fsinin-universitetin-professor-mu%C6%8Fllim-hey%C6%8Ftinin-f%C6%8Faliyy%C6%8Ftin%C6%8F-t%C6%8Fsiri-233>

Sharifov, G., & Mammadzade, G. (2022, November 4). *Institutional evaluation based on a unified system* [in Azerbaijani]. Azerbaijan Teacher Newspaper. <https://www.old.muallim.edu.az/print.php?id=22635>

Trujillo-Juárez S., Chaparro-Sánchez R., Morita-Alexander A., Escudero-Nahón A. (2025). *Strengthening teacher digital competence in higher education through micro-courses: a systematic literature review*. Discover Education, 4, 247. <https://doi.org/10.1007/s44217-025-00687-0>

UNESCO. (2018). UNESCO ICT competency framework for teachers. UNESCO. <https://unesdoc.unesco.org/ark:/48223/pf0000265721>

World Bank. (2022). *The State of Global Learning Poverty: 2022 Update*. World Bank. <https://the-docs.worldbank.org/en/doc/e52f55322528903b27f1b7e61238e416-0200022022/original/Learning-poverty-report-2022-06-21-final-V7-0-conferenceEdition.pdf>

Zhang, X., Sazalli, N. A. H., Faridah, F., & Fong, C. Y. (2024). *Improving teachers' digital competence in higher education: A systematic literature review*. International Journal of Academic Research in Progressive Education and Development, 13(1), 967–979. <https://doi.org/10.6007/IJARPED/v13-i1/20560>

Zhao, X., Sánchez-Gómez, M., Pinto-Llorente, A., & Sánchez-Prieto, R. (2025). *Adapting to crisis and unveiling the digital shift: a systematic literature review of digital competence in education related to COVID-19*. Frontiers in Education, 10, Article 1541475. <https://doi.org/10.3389/feduc.2025.1541475>

Pre-Service Teachers' Beliefs About Classroom Management: The Mediating Role in the Relationship Between Perceptions of Teacher Education and Self-Efficacy in Inclusive Classroom Management

Yogaranee SAKTHIVEL

Department of Educational Psychology, Faculty of Education, University of Colombo, Sri Lanka

yogaranee@edpsy.cmb.ac.lk

ORCID:0009-0000-7803-3206

ABSTRACT

Children with special educational needs often experience discrimination in inclusive classrooms when their academic needs are not adequately met, restricting their opportunities to benefit fully from inclusive education. Poor inclusive classroom management (CM) has frequently been identified in the literature as a key factor contributing to this issue, closely linked to teachers' self-efficacy in CM—beliefs about their ability to manage inclusive classrooms effectively. While several studies show that teacher education courses incorporating CM training can strengthen these beliefs, the mechanisms through which such training shapes teachers' perceived competence remain underexplored. To fill this gap, this study proposes a mediation model based on the integrated model of Tschannen-Moran et al. (1998) to examine whether pre-service teachers' beliefs about CM mediate the relationship between their perceptions of teacher education courses and their self-efficacy in CM. Data were collected online from a convenience sample of 480 pre-service teachers from a state university and National Colleges of Education in Sri Lanka, using standardized scales to measure teacher perceptions, self-efficacy in CM and CM beliefs. The data were analyzed using covariance-based structural equation modelling with AMOS to test the hypothesized relationships. The findings, grounded in both statistical and theoretical bases, revealed the mediating role of CM beliefs—both fully and partially—in the connection between perceptions of CM courses and self-efficacy for CM, underscoring the importance of CM beliefs in enhancing CM self-efficacy rather than the direct influence of course perceptions. The study advocates targeted interventions focusing on inclusive practices, including structured classroom observations to evaluate pre-service teachers' CM skills. These are essential for fostering CM beliefs and creating more equitable and supportive learning environments for all students.

Keywords: Classroom Management Beliefs, Classroom Management Self-efficacy, Inclusive Education, Mediation, Pre-service Teachers.

INTRODUCTION

Among many teaching responsibilities, classroom management (CM) remains crucial in predicting students' overall performance in the classroom (Brophy, 1987; Emmer & Stough, 2001; New South Wales Department of Education, 2020). However, CM has become a significant concern for pre-service teachers (PSTs) because student disruptions have risen significantly in modern classrooms, due to the presence of diverse students with various needs (Main & Hammond, 2008; New South Wales Department of Education, 2020; Patterson & Seabrooks-Blackmore, 2017; Woodcock et al., 2012; Yogaranee, 2024). This situation often leads to exhaustion and a desire to leave the teaching profession early (Aloe et al., 2014; Brouwers & Tomic, 1999; Dicke et al., 2014; Friedman, 1995; Tsouloupas et al., 2010).

To retain prospective teachers in the teaching profession, initial teacher education (ITE) institutions must equip them with the skills necessary for successfully implementing CM, ensuring there is no significant gap between what they learn and the demands of real classrooms (Greenberg et al., 2014; O'Neill & Stephenson, 2012). To accomplish this, the curriculum should include relevant CM coursework that critically shapes how these teachers are prepared to handle future classroom challenges by emphasizing effective strategies to address students' behavioral issues and prevent misbehavior through careful planning, appropriate pacing, and instruction that keeps students engaged in academic activities (Brophy, 1982; Emmer & Stough, 2001; Giallo & Little, 2003; O'Neill & Stephenson, 2011, 2012, 2014; Parsonson, 2012; Stough, 2006).

Although ITE institutions provide adequate training to develop key teacher attributes like teachers' sense of efficacy (TSE) and classroom management self-efficacy (CMSE), many PSTs still consider their preparation insufficient (Aloe et al., 2014; Espelage et al., 2013; Greenberg et al., 2014; Livers et al., 2021; Oliver & Reschly, 2007; Stevenson et al., 2020). This perceived inadequacy, even among those with high CMSE, may be influenced

by other important factors, especially classroom management beliefs (CMBs). CMBs might explain how PSTs' perceptions of CM courses affect their CMSE. This study introduces a model where PSTs' perceptions of CM training predict CMSE, with CMBs mediating this relationship. Specifically, it examines whether CMBs contribute to explaining why PSTs may lack confidence in applying CM strategies, even when they report strong CMSE, particularly in inclusive classrooms.

LITERATURE REVIEW

Conceptualizing Classroom Management

Previous CM literature often focuses on teachers' actions related to managing student misbehavior as a criterion for defining managerial effectiveness, such as Canter's (1989) Assertive Discipline, which emphasizes the importance of clear expectations, strong teacher authority, and consistent consequences to maintain classroom order, treating CM in a narrow sense (Pianta et al., 2012). Ideally, such theories and practices align with behaviorist schools of thought, advocating desist strategies in response to inappropriate behaviors in promoting CM practices, relying heavily on authoritarian approaches driven by teacher-centered pedagogy.

The criteria for judging CM effectiveness and related foci of the CM interventions have been broadened in recent studies to reflect the complexities of classroom environments and student diversity (Korpershoek et al., 2022). Brophy's (1982) conceptualization emphasizes teachers' proactive strategies to prevent misbehavior by actively engaging students in learning through strategic and respectful practices, thereby reducing or eliminating disruptions and fostering a productive learning environment. Similarly, Doyle (1986) describes CM as the actions teachers take and strategies to maintain order through organization, engagement, and instructional management, rather than solely relying on strict rules or punishments. Brophy (1987) suggests that teachers who view CM as a means to establish and maintain an effective learning environment are more likely to succeed than those who view their roles primarily as authority figures or disciplinarians.

Martin and Baldwin (1994) argue that "while no one would negate the importance of instructional planning, perhaps educators should now begin to recognize both effective instruction and effective classroom management as two vital and intertwined components of the instructional process" (pp. 4–5). In line with this, they define CM as "all teacher efforts to oversee the activities of the classroom, including learning, social interaction, and student behavior" (p. 4), which expands upon Brophy's (1982) concept by incorporating instructional management within CM approaches. This comprehensive definition is relevant to modern classrooms as it encompasses all teachers' actions, including both instruction and behavioral management. When CM involves learner-centered teacher actions rather than controlling behavior, it helps create and establish an optimal instructional climate, ensuring students' active engagement in academic success. This approach can prepare learners for life by intrinsically motivating them to take responsibility for their behavior (Albayrak & Ateskan, 2022).

Different Facets of Classroom Management

CM literature generally agrees that CM is a multifaceted concept. Early research viewed it as a single, unified construct, but more recent studies emphasize its complexity, involving various teacher actions related to pedagogy. Martin and Baldwin (1994) identified three key dimensions of CM: person, instruction, and discipline. The person dimension highlights teachers' beliefs about individual students and how they can support their development, focusing on abilities in general. Conversely, the instructional dimension concentrates on classroom structure, including establishing and maintaining rules and routines, physical arrangements, and efficient use of time. The discipline dimension centers on setting behavioral standards and enforcing them.

Recent research generally frames CM within a broader perspective, encompassing both proactive and reactive components, which are now widely recognized as key aspects of CM (Karasova & Nehyba, 2023; Sullivan et al., 2014). The proactive component involves strategies to prevent misbehavior, while the reactive component includes responses, such as issuing warnings or applying consequences. Together, these elements highlight the dual focus of effective CM: combining punitive and positive strategies (Clark et al., 2023; Hepburn & Beamish, 2019; Korpershoek et al., 2014, 2016, 2022; Oliver et al., 2011; O'Neill & Stephenson, 2011). Although these perspectives offer a helpful framework, some studies have expanded CM to include social and emotional aspects of students, emphasizing their socialization (O'Neill & Stephenson, 2011; Sakthivel, 2025).

Classroom Management Courses and Teacher Preparation

CM is widely recognized as a key element of effective teaching; however, questions remain about how well ITE programs prepare PSTs for its successful practice. Research highlights both the benefits of specific CM coursework and ongoing gaps in program design and delivery. For example, O'Neill and Stephenson (2012) showed that PSTs who completed dedicated CM units felt more prepared and confident than those who did not. Similarly, Patterson and Seabrooks-Blackmore (2017) found that structured CM coursework, especially when

combined with opportunities for reflection, strengthened teachers' confidence and skills in CM. These studies emphasize that CM courses contribute positively not just through content delivery but also by shaping teachers' beliefs and confidence in applying strategies in practice.

However, evidence also indicates that many ITE programs still fall short in this area. Freeman et al. (2014) revealed, in their review of accreditation policies and program requirements, that a significant number of programs offer limited or no dedicated coursework on CM. This lack contributes to a persistent feeling of underpreparedness among PSTs, who often enter classrooms without the necessary CM skill sets to implement CM practices effectively.

Taken together, these findings suggest a dual reality. On the one hand, well-designed CM courses—particularly those that focus on building proactive beliefs and self-efficacy—can play a pivotal role in preparing teachers for successful classroom practice. On the other hand, when such courses are absent, embedded superficially within other units, or delivered without attention to beliefs and reflective practice, PSTs may leave their training programs lacking the confidence and skills needed to manage classrooms effectively. Such tensions highlight that the mere inclusion of the CM course units in ITE curricula will not be effective; instead, the curricula should ensure depth and alignment to foster both knowledge and belief structures that enable teachers to view such courses as effective.

The Impact of Effective Classroom Management

According to Landau (2001), "effective classroom management strategies that address individual needs while protecting the interests of the learning community comprise, without a doubt, the most valuable skill set a teacher can have" (p. 4). As effective classroom managers, PSTs would be better equipped to accommodate diversity in their classrooms and be more open to inclusion (Meijer & Foster, 1988; Soodak, 2003). Previous research has shown that, among various factors—including teachers' cognitive ability and teacher and school demographics—CM is a potential predictor of student achievement (Marzano et al., 2003; New South Wales Department of Education, 2020).

Poor CM can disrupt instructional activities even when it is implemented effectively, as both are interconnected and each strongly influences the other, impacting student achievement and engagement (Brophy, 1982; Hattie, 2009; Marzano et al., 2003; O'Neill & Stephenson, 2011). According to Brouwers and Tomic (2000, p. 242), "If teachers do not react adequately to students when their behavior is disruptive, instructional time is lost for all students. To reach instructional goals, teachers must adequately address disruptive behavior in the classroom".

Teachers lacking skills in classroom and behavior management can negatively impact students' well-being and academic success (Simonsen et al., 2008; Marzano & Marzano, 2003). PSTs are often criticized for not being adequately prepared in CM (Greenberg et al., 2014; Livers et al., 2021; Oliver & Reschly, 2007; Stevenson et al., 2020). Additionally, PSTs frequently believe that CM mainly involves punishing students after misbehavior to regain classroom control, a misconception that concerns teacher educators (O'Neill & Stephenson, 2012; Goss & Hunter, 2015). These existing beliefs can lead PSTs to overlook students' diverse needs, which some may see as unrelated to effective CM practices (Kaya & Selvitopu, 2019; Main & Hammond, 2008).

Effective CM continues to challenge many pre-service and current regular classroom teachers (Greenberg et al., 2014; Karasova & Nehyba, 2023; New South Wales Department of Education, 2020). As novices, PSTs especially feel overwhelmed by adapting instructional activities to address the diverse needs of an increasingly heterogeneous student population in regular classrooms (Main & Hammond, 2008; Yogaranee, 2024). This issue becomes even more serious in the context of students' challenging behaviors, which can lead to teacher stress and burnout, ultimately resulting in teacher attrition (Brouwers & Tomics, 2000). Studies show a strong link between students' disruptive and challenging behaviors (actual or perceived) and teacher burnout (Bottiani et al., 2019; Dicke et al., 2014; Lambert et al., 2009).

It is essential to evaluate the unmet needs of children with special educational needs (SEN), as these needs might lead to their isolation and exclusion in inclusive classrooms. This exclusion can ultimately lead to withdrawal from inclusive education (IE). Such issues are more prevalent in lower-middle-income countries, including Sri Lanka (Abeywickrama et al., 2013). The violation of students' right to education and the lack of opportunities to benefit from IE remain major concerns, emphasizing the need for teacher preparation programs to focus on how and to what extent prospective teachers are trained and equipped with appropriate behavior management skills and strategies.

Classroom Management Self-Efficacy

TSE has been a well-documented concept in ITE for IE since the 1970s. It is connected to several key teacher

behaviors, such as instructional and CM practices, to improve student achievement (Tschanen-Moran & Woolfolk Hoy, 2001). CMSE was developed as a variation of TSE and was initially included as one of its dimensions in assessment tools measuring TSE. Over time, CMSE has gained recognition as a separate concept within TSE research. Based on Bandura's (1977, 1997) social cognitive theory, it is defined as teachers' beliefs in their future ability to organize classroom resources, routines, and time, and to manage students' attention, socialization, and behavior. Brouwers and Tomic (2000) describe CMSE as "teachers' beliefs in their capabilities to organize and execute the courses of action required to maintain classroom order" (p. 242).

Development of Classroom Management Self-Efficacy

The development of CMSE can be built upon four sources of information (Bandura, 1977, 1997): mastery experiences (personal accomplishment), vicarious (observational) experiences, verbal (social) persuasion, and physiological and emotional states. Given the significant importance of mastery experiences or performance achievements, Bandura (1977, 1997) contended that efficacy information is most effective when it originates from mastery experiences or is based on past performance, demonstrating whether an individual can succeed. Once robust efficacy beliefs are established through repeated successes, the negative impact of frequent failures is likely to decrease.

The second source of information is vicarious experiences, where practicing teachers observe other teachers' performances through live or symbolic modeling to develop their own CM capabilities. Teachers conclude their abilities through social comparisons. However, this type of experience is less reliable than direct evidence of personal accomplishments. As a result, self-efficacy expectations built solely on modeling tend to be weaker and more susceptible to change. Conversely, encouragement, positive feedback, and verbal support from mentors, teachers, and colleagues help strengthen CMSE, while negative or unconstructive support can weaken it. Teachers' emotional states are physiological; emotional situations can negatively impact CMSE by affecting their perceptions of competence. Teachers often rely on their arousal levels when assessing their anxiety and vulnerability.

Developing CMSE among PSTs, ITE programs incorporate all four sources of information, which are embedded in course structures and practicum experiences, aligning with Bandura's (1997) social cognitive theory. Mastery experiences are facilitated through microteaching, simulations, and practicum activities that enable PSTs to apply inclusive strategies with immediate feedback. PSTs acquire vicarious experiences through real or simulated classroom settings, often via model lessons or video-based cases, observing expert teachers or peers successfully managing inclusive classrooms. Teacher educators and mentors provide encouragement and constructive feedback (verbal persuasion) on PSTs' efforts to implement inclusive practices. Lastly, physiological and affective states are addressed by creating supportive learning environments that minimize anxiety and foster confidence in managing diverse classrooms (Bandura, 1997). These practices within ITE collectively enhance PSTs' CMSE by systematically engaging the multiple sources of efficacy information.

However, the literature has often criticized the extent to which these sources of efficacy contribute to the development of TSE and its variation, CMSE, as other intervening factors can also influence how efficacy information is processed. Teachers' beliefs about teaching and classroom management influence how they interpret experiences as building their competence (Poulou, 2007). Contextual factors, including school culture, mentor guidance, and institutional support, can either enhance or diminish the impact of efficacy-building opportunities (Sharma & Loreman, 2014). Cultural expectations surrounding authority and discipline also play a role, as they shape which management strategies teachers view as effective or appropriate (Baier-Mosch & Kunter, 2024).

The Role of Classroom Management Self-Efficacy: A Potential Predictor or an Outcome

Just as TSE assesses teachers' beliefs in their teaching abilities—crucial for their success and motivating classroom actions—a strong sense of CMSE encourages teachers to carry out CM actions effectively. CMSE is a vital part of teaching that can be thoroughly studied, as it predicts overall CM decisions (Brouwers & Tomic, 2000; Woolfolk Hoy, 2000). Several studies have shown a direct link between CMSE and teacher stress and burnout. According to Parker et al. (2012), teachers who doubt their CM abilities are more likely to develop burnout symptoms. Conversely, teachers with positive self-efficacy are better equipped to manage stressors, enabling them to use effective strategies to handle challenges.

CMSE influences how teachers perceive stressful situations, based on their confidence in CM skills when managing students' challenging behaviors. Bandura (1977, 1997) suggests that it is not the actual level of CMSE, such as TSE, that determines teachers' reactions, but rather their perception of their ability to handle future situations. This perception influences the amount of effort they invest and the duration of their persistence despite

obstacles and negative experiences. Teachers with high CMSE tend to recover quickly from setbacks, while those with low CMSE are less likely to believe they can effectively manage classroom disruptions. “The probability of a teacher acting to resolve the situation is low if he or she lacks belief in his or her capability to manage classroom disturbances effectively” (Dicke et al., 2014, p. 3).

An early study by Brouwers and Tomic (1999) examined how student disruptive behavior impacts teacher burnout, with CMSE serving as a mediator. The study found that CMSE is a significant predictor of teacher depersonalization and emotional exhaustion (EE), two main aspects of burnout. Specifically, student disruptive behavior had a negative impact on CMSE. In turn, lower levels of CMSE led to increased depersonalization and EE. However, CMSE did not show a significant indirect effect on personal accomplishment.

Dicke et al. (2014) developed a process model to examine whether classroom disruptions mediate the relationship between CMSE and EE, with CMSE acting as a moderator. The study found statistically significant path coefficients, indicating that CMSE can predict EE through classroom disturbances, particularly for individuals with low CMSE scores, when it functions as a moderator. The results indicated that teachers who believe they can effectively manage CM experience fewer disruptions than those with low CMSE.

These results can be interpreted in two ways. First, teachers with low CMSE seem more susceptible to classroom disturbances due to increased disruptions and feelings of incapability, which lead to higher EE. Second, low CMSE levels may lead to more classroom disruptions because teachers lack confidence in their CM skills and are unable to manage the situations effectively. Conversely, teachers with higher CMSE levels report fewer disruptions, which makes the environment less stressful and results in lower stress and EE.

Numerous empirical studies have regarded CMSE as a predictor, demonstrating its impact on various aspects of teachers' professional functioning, such as instructional quality, CM practices, stress levels, and burnout. However, relatively few studies have examined CMSE as an outcome of intervention or training effectiveness (Main & Hammond, 2008; O'Neill, 2015; Patterson & Farmer, 2018; Patterson & Seabrooks-Blackmore, 2017; Purniningtyas et al., 2023; Sciuchetti & Yssel, 2019; Sokal et al., 2013; Yılmaz & Çavaş, 2008; Yuksel, 2014). Main and Hammond (2008) investigated the self-efficacy of PSTs in behavior management before and after the practicum. They observed a significant increase in the average scores for CMSE. However, participants generally preferred familiar behavior management strategies often seen in practice, such as time-out, proximity, and extrinsic rewards, while giving less attention to evidence-based approaches. The authors recommended that ITE programs should enhance prospective teachers' exposure to research-supported strategies and promote reflective CM practices.

O'Neill's (2015) study investigated the impact of a semester-long course on managing challenging behaviors in inclusive classrooms on the CMSE of Australian PSTs. The study assessed CMSE at four consecutive time points: pre-coursework, pre-professional experience, post-professional experience, and post-coursework. The study found a significant gain in the mean score for CMSE from pre- to post-coursework, suggesting that targeted coursework can enhance PSTs' CMSE. The study also explored sources of efficacy information and learning activities contributing to these changes. The author emphasized the importance of integrating such coursework into ITE programs to better prepare PSTs for IE settings.

Similarly, Bosch and Ellis (2021) investigated the impact of avatar-based interventions integrated into specific PST education courses on CMSE, instructional strategies, and student engagement. They found significant gains, especially in Foundations in Education and CM courses, where controlled, low-risk settings allowed safe practice of classroom scenarios. Given that ITE with CM courses contributed significantly to the improvement of CMSE, however, the focus on the CM courses in ITE remains a concern for PSTs and policymakers, since “the absence of classroom management or the reduced attention paid to it is really not a new phenomenon, the trend has been discussed and documented for over 20 years” (Landau, 2001, p. 4).

While many studies have documented the positive impact of ITE and teaching practicum on the development of PSTs' CMSE, Yılmaz and Çavaş (2008) present a somewhat contradictory finding. Their study found that although teaching practicum influenced PSTs' CMBs, it did not significantly affect their beliefs about science teaching competence. The divergence in findings suggests that practicum elements across different educational contexts or subject areas may not have a direct or consistent influence on CMSE development. It raises important considerations about the nature and quality of teaching practicum, the support provided during practicum, and possible pre-existing beliefs that PSTs bring into their training. Given the significant contribution of ITE and the practicum component in shaping CMSE, the findings by Yılmaz and Çavaş emphasize the need for further investigation into the specific factors influencing CMSE, beyond ITE.

The literature debates whether CMSE should be primarily viewed as a predictor or an outcome. Treating CMSE as an outcome is especially valuable for understanding the factors that shape and develop it. This perspective is crucial for guiding ITE programs and designing effective interventions, as it helps identify how experiences and contextual factors contribute to strengthening CMSE (O'Neill & Stephenson, 2011). This study explores this topic by examining the factors that influence CMSE, particularly in inclusive classroom settings.

Teacher Beliefs about Classroom Management

In this study, the concept of belief is based on Richardson (1996), who describes beliefs as psychologically held propositions about the world that individuals consider to be true. Teacher beliefs refer to the mental tendencies toward assumptions, views, opinions, or ideas that teachers hold, rooted in their personal principles, which guide their attitudes, judgments, and behaviors (Pajares, 1992). The "why" and "how" of teacher behavior originate from these underlying beliefs, which serve as interpretive lenses through which teachers interpret and internalize instructional activities (Buehl & Beck, 2015). Such beliefs are influenced by family and personal values, past educational experiences, and the socio-cultural contexts of schools (Nespor, 1985).

There is a growing consensus that the successful inclusion of children with SEN in regular education classrooms requires PSTs to embrace the philosophy and practice of CM, which is mainly influenced by their positive beliefs (Ben-Yehuda et al., 2010; Ritter et al., 2019). Much has been written about the relationships between teachers' beliefs about learner diversity, their knowledge of IE, and their decisions regarding inclusive pedagogy, goal setting, and task definition (Nespor, 1985). These beliefs are generally formed early in teachers' careers and are not easily changed (Pajares, 1992).

Negative beliefs and unwelcoming attitudes toward including students with SEN in regular classrooms have been identified as significant barriers to implementing IE (Dignath et al., 2022; Woodcock et al., 2023). Teacher beliefs relate to how CM should be used and how PSTs form expectations for student behavior. The first refers to their understanding of CM, while the second concerns their belief in whether CM practices can facilitate meaningful learning experiences in inclusive settings. Therefore, PSTs' beliefs about CM greatly influence how they handle student misbehavior in inclusive classrooms (Henson, 2001; Yılmaz & Çavaş, 2008).

Different Facets of Teacher Beliefs about Classroom Management

In line with the broad dimensions of CM, CMBs can be categorized into proactive and reactive. Proactive beliefs reflect teachers' inclination to implement preventative strategies to stop misbehavior before it occurs, while reactive beliefs emphasize punitive, control-oriented practices to correct inappropriate behavior. These belief systems typically function in opposition; stronger reactive beliefs often reduce the likelihood of using proactive strategies.

Individual belief systems, psychological theories, and societal and educational changes shape CMBs. Traditionally, CMBs aligned with behaviorist principles, focusing on discipline, obedience, and teacher authority through rewards and punishments (see Martin & Baldwin, 1994; Martin et al., 1998, 2016 for interventionist beliefs). By the mid-20th century, student-centered approaches emerged, influenced by humanistic psychology, which promoted positive and inclusive learning environments and non-interventionist beliefs (see Martin & Baldwin, 1994). Later, constructivist perspectives, such as those of Vygotsky, adopted a collaboration-focused approach to management. In the 21st century, CMBs have continued to evolve, emphasizing inclusivity and advocating for diverse and equitable management strategies that support all students, regardless of their background or abilities.

Woolley et al. (2004) developed the Teacher Beliefs Survey, which focuses on teachers' general beliefs about teaching and learning approaches, especially the difference between constructivist and traditional paradigms. Although the authors briefly discussed traditional management as a sub-dimension—highlighting teacher beliefs about strict control, rule enforcement, and authority in managing student behavior—this concept closely aligns with the reactive beliefs dimension in this study. This orientation emphasizes maintaining order through explicit rules and directive interventions when behavioral issues occur. Such interventionist beliefs aim to respond to misbehavior to restore classroom order rather than prevent it proactively. However, the present study created a scale to measure CMBs of PSTs, distinguishing between proactive and reactive strategies. This makes the current scale more targeted and directly useful for studies examining teachers' preferred management approaches rather than their broader instructional philosophies.

The literature consistently shows that PSTs are often criticized for their heavy reliance on naive, reactive beliefs about CM, which are teacher-controlled and interventionist-oriented (Baier-Mosch & Kunter, 2024; Berger et al.,

2018; File & Gullo, 2002; Huang et al., 2019; Pajares, 1992; Parsonson, 2012; Soodak, 2003). Such beliefs are thought to be shaped by their schooling, where management was primarily punitive and focused on addressing misbehavior after it occurred. This reliance can lead to continued use of ineffective punitive strategies that escalate rather than prevent disruptions. ITE programs often fail to challenge these beliefs and reinforce traditional, control-based approaches (Stough & Emmer, 1998). Without proper exposure to proactive strategies, PSTs often rely on discipline-focused management, which yields limited success (Poulou, 2007). In contrast, proactive practices, such as promoting engagement, building positive relationships, and preventing misbehavior, are more effective in creating supportive classroom environments (Oliver et al., 2011; Reupert & Woodcock, 2010).

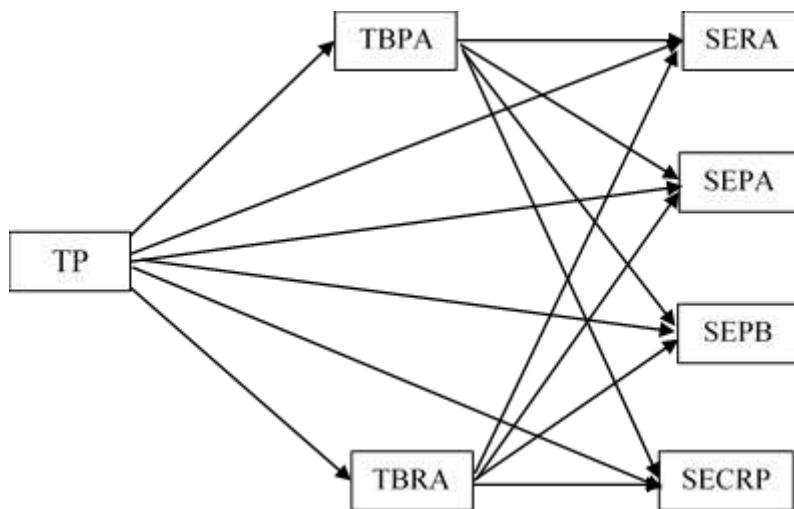
Classroom Management Beliefs as a Potential Mediator

The literature consistently shows the potential mediating role of CMSE in influencing the effects of contextual and teacher factors, as well as CM performances. However, only a few studies identify CMBs as a mediator, highlighting the need for further research. For example, Berger et al. (2023) surveyed 154 vocational teachers to examine the impact of teaching experience on self-reported CM practices, as reflected in teacher beliefs about student motivation, self-efficacy beliefs (CMSE), and general pedagogical beliefs. They found that teachers' beliefs about student motivation and CM are closely linked to their CMSE, which in turn influences how they report managing their classrooms. Such beliefs may serve as a bridge connecting teachers' experiences with their actual CM behaviors.

Identified Research Problem

The literature consistently highlights numerous studies on TSE and its derivative, CMSE, as standalone constructs or dimensions within the TSE framework. These studies typically treat TSE and CMSE as predictors of teacher performance, including CM practices. However, there is limited research on how ITE and contextual factors shape these constructs. Notably, few studies have examined CMSE as an outcome. Investigating CMSE as an outcome is crucial for designing targeted interventions that strengthen this domain-specific attribute, which may be more actionable than general TSE.

Furthermore, although extant research emphasizes the direct impact of PSTs' perceptions of CM courses on CMSE, it rarely explores the underlying mechanisms of this relationship. Among various mediating factors, CMBs may act as a potential mediator influencing this connection. Understanding this mediation process is crucial for guiding teacher preparation programs and better supporting PSTs in developing inclusive, proactive CM practices. A common assumption is that teachers with high ICMSE are more inclined to adopt effective CM strategies in inclusive classrooms. However, this causal link does not fully address a key question: why do some highly self-efficacious PSTs struggle to implement effective inclusive CM strategies, despite their confidence? Investigating such causal mechanisms is vital.


The Theoretical Framework

The study draws on the integrated model of TSE by Tschannen-Moran et al. (1998), grounded in Bandura's (1977, 1997) social cognitive theory. This model highlights that efficacy beliefs develop through the cognitive processing of professional learning experiences. This model supports the role of CMBs as a mediator, linking PSTs' perceptions of CM courses to their ICMSE. Beliefs formed through the interpretation of training experiences directly influence management self-efficacy. By applying this model as a theoretical framework, this study positions CMBs as a key pathway through which ITE shapes PSTs' confidence in managing inclusive classrooms.

This theoretical model suggests that many PSTs might view their ITE courses positively but still lack confidence in managing inclusive classrooms effectively. Although more positive perceptions of knowledge, skills, and attitudes gained from CM courses should improve ICMSE, this is not always guaranteed. If ITE courses do not promote constructive CMBs, a well-designed program may not increase ICMSE. Some teachers might develop unfavorable CMBs, which, in turn, negatively impact their ICMSE. On the other hand, when PSTs develop strong, well-formed beliefs about effective CM practices, they are more likely to feel confident in their ability to manage students. Therefore, the mediating role of CMBs helps clarify when perceptions of CM courses lead to higher ICMSE.

The Conceptual Framework

The conceptual framework (Figure 1) shows the proposed mediation model, where PSTs' perceptions (TP) of CM courses offered by ITE programs act as the predictor. The two dimensions of CMBs, teachers' beliefs about proactive actions (TBPA) and reactive actions (TBRA), serve as mediators. The outcome variables are the four dimensions of ICMSE: Self-Efficacy for Reactive Actions (SERA), Self-Efficacy for Proactive Actions (SEPA), Self-Efficacy for Implementing Strategies to Promote Students' Prosocial Behaviour (SEPB), and Self-Efficacy for Enforcing Classroom Rules and Procedures (SECRP) (Sakthivel, 2025).

Figure 1: The Proposed Parallel Multiple Mediation Model

This study explores the following research questions: How do PSTs perceive the effectiveness of CM courses in their ITE programs? What are the main proactive and reactive CMBs held by PSTs? What is the level of ICMSE among PSTs? Is there a significant relationship between PSTs' perceptions of CM courses and their ICMSE? Does the relationship between PSTs' perceptions of CM courses and their ICMSE operate through their CMBs, implying a mediating effect?

THE STUDY

Research Design

This study used a cross-sectional survey design with a quantitative approach to examine the mediating effects of CMBs (TBPA and TBRA) on the relationship between TP of CM courses and ICMSE, employing a parallel multiple mediation analysis. This statistical method enabled the evaluation of each mediator's unique contribution while controlling for the influence of others. The data were analyzed with IBM SPSS AMOS (v. 23), which is suitable for testing direct and indirect effects in mediation models with multiple parallel mediators.

Procedure

This study has two complementary phases. Phase 1 uses a data-driven approach, focusing on quantitative analysis and findings based on a strict statistical framework. It employs inferential statistical techniques to explore the relationships among variables and to examine how predictors contribute to outcome variables through multiple mediations. Phase 2 is based on a theoretical analysis guided by existing CM theories. It emphasizes conceptual reasoning to explain how and why the observed patterns among the latent constructs appeared. Special attention is given to the role of TP of ITE courses as a predictor affecting the mediation pathways between mediators and outcome variables. By analyzing data from both statistical and theoretical perspectives, this two-part approach enhances the overall validity and reliability of the study, providing a balanced view that combines empirical evidence with conceptual understanding to support the findings, conclusions, and recommendations.

Participants

This study used a convenience sample of 480 Tamil-speaking PSTs who participated in an online survey from May to July 2024. The participants were selected from two ITE programs: the Bachelor of Education degree offered by the state university and the Diploma in Teaching offered by the National Colleges of Education. Data were collected in accordance with ethical guidelines, including obtaining informed consent after participants were informed about the study's purpose and nature. Participants were told their participation was voluntary, they could withdraw at any time during data collection, and their information would be kept confidential and private.

Measures

Three author-developed scales were used to collect quantitative data. ICMSE was measured using the 25-item, four-factor Inclusive Classroom Management Self-Efficacy Scale, which covers SERA ($n = 6$), SEPA ($n = 7$), SEP B ($n = 6$), and SECRP ($n = 6$). All items were positively worded and rated on a six-point Likert scale, ranging from "strongly disagree" to "strongly agree," with a maximum score of 150 indicating a high ICMSE. In a previous study, the 23-item version showed strong internal consistency, with Cronbach's alpha values of .905, .902, .913, and .855, and McDonald's omega values of .907, .905, .916, and .856 for SECRP, SEPA, SERA, and SEP B,

respectively. Convergent validity was supported by AVE values of .62, .56, .63, and .50, and discriminant validity confirmed the distinctiveness of the factors (Sakthivel, 2025).

The TP of ITE courses that included CM components, whether standalone or integrated into the curricula, was assessed using the 12-item TP scale. The scale features positively worded items with six response options, ranging from 'strongly disagree' to 'strongly agree'. A maximum score of 72 reflects positive perceptions of PSTs regarding ITE courses, especially concerning CM components. The scale demonstrated good content validity and internal consistency, with a Cronbach's alpha value of .914 (Yogaranee, 2025).

CMBs were assessed using an 18-item, two-factor Teacher Beliefs (TB) about CM scale, a newly developed scale designed for this study in Tamil, one of Sri Lanka's native languages. Response options ranged from 'strongly disagree' (1) to 'strongly agree' (6). All items were positively phrased to reduce participants' confusion and help researchers interpret the results more accurately. The total score could range from 18 to 108, with higher scores indicating stronger beliefs in effective CM practices among PSTs.

The development procedures of the TB about the CM scale followed the principles and steps recommended by Boateng et al. (2018) and DeVellis (2016) to ensure its psychometric properties. Based on relevant theoretical frameworks and empirical literature, a clear conceptual definition of the TB construct related to CM was established in the initial phase. This was followed by item generation, creating an item pool to reflect the two targeted dimensions: TBPA and TBRA. The items for the initial two-factor structure of the TB about the CM scale were drafted with 26 items, with 13 items representing each factor.

Two colleagues initially conducted a subjective evaluation of an a priori two-factor TB scale to establish its face validity, leading to the removal of two redundant items from the TBRA subscale. Two subject experts in educational psychology and inclusive classroom management independently assessed the relevance of items for objective content validation. Two low I-CVI items from the TBPA subscale were removed based on their ratings. The modified Kappa (κ^*) exceeded .74, indicating excellent inter-rater agreement and strong content validity (Polit & Beck, 2006). Pretesting of the 22-item scale identified four items with floor or ceiling effects, which were removed, resulting in a refined 18-item scale with nine items per factor suitable for factor analysis.

Determining the Factor Structure of the Constructs TP, CMB, and ICMSE

Since TP, CMB, and ICMSE are conceptually interconnected, Principal Axis Factoring (PAF) with Direct Oblimin (DO) was used as the extraction method in Exploratory Factor Analysis (EFA) (IBM-SPSS, v.25). This approach helps identify common latent factors while excluding unique and error variance, which is crucial for accurately interpreting psychological constructs. Before conducting EFA, potential multivariate outliers among the predictor variable (TP) and the mediator (CMB) were detected using Mahalanobis Distance (MD) as part of the linear regression diagnostics. The critical χ^2 probabilities, with three degrees of freedom (for TP, TBRA, and TBPA), were checked for each MD value at a significance level of $p < .001$. None of the MD values exceeded the critical value ($\chi^2(3) = 16.27, p > .001$), indicating that multivariate outliers did not pose a significant problem for either the predictor or the mediator.

A subjective review of the correlation matrix revealed no inter-factor correlations among the predictors and mediators (TP, TBPA, and TBRA) exceeding the .80 cutoff, indicating no multicollinearity. This was confirmed through the variance inflation factor (VIF) and tolerance values from linear regression. According to Hair et al. (2019), tolerance values of $\leq .10$ and VIF values of ≥ 10 suggest serious multicollinearity. However, in this study, tolerance ranged from .802 to .874, and VIF from 1.144 to 1.247, confirming that multicollinearity was not a concern. Since bootstrapping was used in the mediation analysis, normality and homoscedasticity assumptions were not problematic. EFA supported linearity, with all factor loadings exceeding .30 on their respective latent factors (Hair et al., 2019).

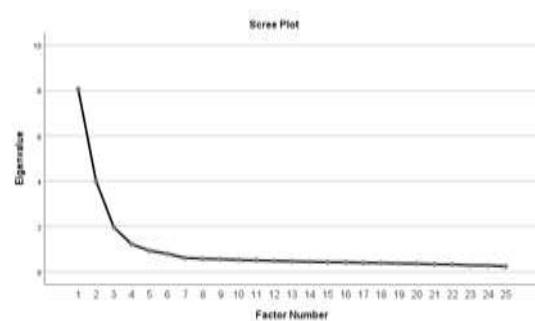
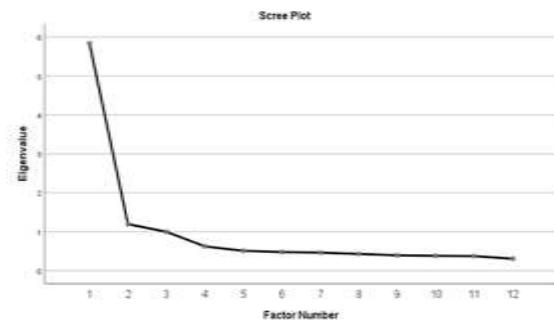
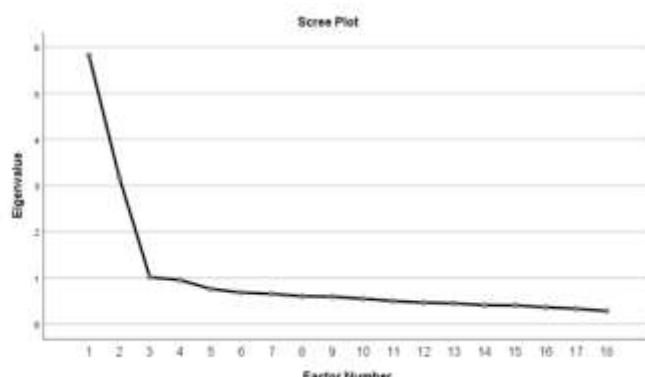

The factorability of the correlation matrices for the data obtained from the TP, TB about CM, and ICMSE scales was assessed using the initial subjective assessment of inter-item correlations in the respective correlation matrices. This analysis showed an adequate range of correlations between .30 and .80, suggesting that the matrices are factorable. This was followed by supplementary objective measures of Kaiser-Meyer-Olkin Measure of Sampling Adequacy (KMO-MSA), Bartlett's Test of Sphericity, and Determinants. Results presented in Table 1 shows that all observed data were factorable, with the KMO-MSA of .934 for the ICMSE, .935 for TP, and .913 for TB, exceeding the threshold of .90 for 'marvellous', with a statistically significant Bartlett's Test of Sphericity of $\chi^2(253) = 5875.095 (p < .001)$ for the ICMSE, $\chi^2(55) = 2638.629 (p < .001)$ for the TP and $\chi^2(120) = 3233.369 (p < .001)$ for the TB (Kaiser, 1974).

Table 1: The Criteria to Determine the Factorability of the TICMSE, TP, and TB Scales


Constructs	KMO-MSA	Thre-sholds	Decision	Bartlett's Test χ^2	p	Decision	Determi-nants	Thre-sholds	Decision
ICMSE	.934	$\geq .70$	Marvelous	5875.095 (253, $p < .000$)	Sig.	Factorable	4.281E-6	< .00001	Not factorable
TP	.935	$\geq .70$	Marvelous	2638.629 (55, $p < .000$)	Sig.	Factorable	.004	> .00001	Factorable
CMB	.913	$\geq .70$	Marvelous	3233.369 (120, $p < .000$)	Sig.	Factorable	.001	> .00001	Factorable

The determinant values further supported the factorability of the data, with the minimum values exceeding .00001 for the TP and TB, indicating that multicollinearity was not a concern. This suggests that the data were factorable, except for the ICMSE, where the value was close to zero. This may be due to multicollinearity issues. However, some studies suggest that violations of this determinant threshold may not always preclude factor analysis, especially if other measures, such as high KMO-MSA and a significant Bartlett's Test of Sphericity result, indicate suitability.


Using PAF and DO rotation methods, an initial EFA was conducted on data obtained from the 25-item ICMSE, 12-item TP, and 18-item TB scales to extract the final solutions. The number of factors to extract was determined based on the eigenvalue criterion of ≥ 1 , scree plots, and parallel analysis. The results indicated a four-factor structure for the ICMSE, a two-factor structure for the TP, and a two-factor structure for the TB scales (Figures 2a, 2b, and 2c). These factor solutions were further validated through parallel analysis with 1,000 iterations to confirm the final factor structure (Table 2).

(a) The TICMSE Scale

(b) The TP Scale

(c) The TB Scale

Figure 2: The Scree Plots Showing the Number of Factors to Retain in the Final Scales

Table 2: Comparison of observed data's eigenvalues with the 95th percentile of random eigenvalues.

		Latent Constructs								
Eigen-values	Observed data 95 th percentile	ICMSE				TP		TB		
		F1	F2	F3	F4	F1	F2	F1	F2	
		7.719	3.930	1.944	1.258	5.825	1.190	5.823	3.173	1.015
		1.479	1.395	1.336	1.288	1.309	1.222	1.412	1.331	1.273

Note. F – Factor; ICMSE – Inclusive Classroom Management Self-Efficacy; TP – Teacher Perception; TB – Teacher Belief

The parallel analysis supported a two-factor solution for the TB construct, as the eigenvalue of the third factor (1.015) was below the 95th percentile of random eigenvalues (1.273). For ICMSE, although parallel analysis indicated a three-factor solution (the fourth eigenvalue, 1.258, was below the 95th percentile, 1.288), a four-factor structure—SERA (n = 6), SEPA (n = 7), SEPB (n = 6), and SECRP (n = 6)—was theoretically essential, as merging SERA and SEPA was not meaningful (Fabrigar et al., 1999). Similarly, a two-factor model was theoretically expected despite parallel analysis suggesting a one-factor solution for TP. Given this discrepancy, two separate analyses were conducted: Data Analysis I followed the statistically supported one-factor TP structure for initial validation and mediation paths, while Data Analysis II adopted the theoretically grounded two-factor TP structure to explore its effect on ICMSE, particularly regarding the mediating role of teachers' beliefs. (O'Connor, 2000; Velicer & Fava, 1998).

Labelling the TB Sub-Scales

Following the confirmation of a two-factor structure of the TB through EFA and parallel analysis, the potential labels for these two subscales were assigned as TBPA (n = 9), with items coded from TBPA1 to TBPA9, and TBRA (n = 9), with items coded from TBRA1 to TBRA9. Although TBPA and TBRA are newly introduced constructs, their conceptual foundations align with established research that differentiates between proactive and reactive strategies (Clark et al., 2023; Gaias et al., 2019; Hepburn & Beamish, 2019; Karasova & Nehyba, 2023; O'Neill & Stephenson, 2011).

The TBPA dimension of the CMB emphasizes teachers' beliefs in using positive strategies to prevent misbehavior and promote good student behavior through structured routines, student engagement, and self-regulation. These beliefs often align with Martin et al.'s non-interventionist typology, where teachers trust students to manage their behavior within a supportive environment. Proactive teachers focus on setting clear expectations, building positive relationships, and employing preventive strategies to foster a constructive classroom climate (Garwood et al., 2017; Alter & Haydon, 2017). TBRA reflects teachers' beliefs that center on addressing misbehavior through corrective and punitive actions, rule enforcement, and disciplinary measures. These beliefs align with the interventionist approach in Martin et al.'s (1998) typology, where teachers see themselves as the primary agents of behavioral control. Teachers with reactive beliefs prioritize immediate responses to misbehavior to maintain order and ensure compliance (Clark et al., 2023; Gaias et al., 2019).

Assessing Factor Loadings and Item Retention

The next EFA run aimed to identify which items to keep in the final scale, using a minimum factor loading threshold of .60, as recommended by Field (2013), Hair et al. (2010), and Tabachnick and Fidell (2013). Three separate EFAs were performed for the constructs: TP, CMBs, and ICMSE. For the ICMSE, two items, SEPA4 (.590) and SEPB3 (.538), were dropped due to their relatively low factor loadings. The rotated factor solution for the remaining 23 items showed strong loadings, ranging from .647 to .739 for SERA, .631 to .711 for SEPA, .653 to .770 for SEPB, and .712 to .813 for SECRP (Field, 2013; Hair et al., 2019; Tabachnick & Fidell, 2013).

Since most loadings of the items in the ICMSE exceeded the recommended threshold of .60, the extracted factors had strong explanatory power (Costello & Osborne, 2005). The four factors explained 52.71% of the total variance, with SECRP contributing 24.97%, SERA 12.70%, SEPB 7.88%, and SEPA 7.17%, demonstrating a clear and meaningful factor structure. Additionally, the internal consistency of each factor confirmed that the items reliably measured their respective latent constructs (Table 4). These findings support the overall reliability of the ICMSE scale. With 23 items across four factors, the scale is prepared for further Confirmatory Factor Analysis (CFA).

The parallel analysis confirmed a single-factor solution for TP, leading to an EFA with an unrotated model. The results show that the standardized factor loadings ranged from .587 (TP6) to .741, except for TP10, which had a lower loading of .462, well below the .60 benchmark for initial factor extraction (Costello & Osborne, 2005).

Moreover, EFA indicated a unidimensional structure, with the single extracted factor explaining 48.308% of the total variance, a value within the generally recommended threshold of 40–50% for single-factor retention (Hair et al., 2019; Tabachnick & Fidell, 2013). While this supports the adequacy of a unidimensional model, it does not provide a strong, conclusive result. TP6 had a lower loading of .587, and deleting it would increase the total variance to 49.729%, which still does not meet the threshold. Therefore, its removal was postponed to maintain theoretical consistency with the construct. Further validation, such as CFA, will be needed to evaluate the model's suitability and overall fit.

A subsequent EFA was conducted for the TB scale. This scale assessed CMBs of PSTs, specifically their inclination toward proactive and reactive measures in inclusive classrooms. The items, standardized factor loadings, and descriptive statistics are presented in Table 3.

Table 3: Standardized Factor Loadings and Descriptive Statistics for the Items Assessing Beliefs About Classroom Management

Item Code	Item	FL	M	SD
TBPA1	Allowing students to make choices during classroom activities can decrease the chances of disruptive behaviour.	.648	4.25	.613
TBPA2	Fostering students' socio-emotional skills is a more effective way to prevent disruptions than waiting to correct misbehavior.	.694	4.23	.700
TBPA3	Enforcing clear and consistent classroom rules may sometimes disrupt the flow of lessons, but in the long run, it enhances classroom structure and reduces misbehavior.	.497	4.21	.785
TBPA4	Student misbehavior is less likely to occur when teachers actively engage learners through various interactive instructional strategies.	.619	4.19	.638
TBPA5	Differentiated instruction is crucial for meeting the diverse learning needs of students with special educational needs.	.639	4.25	.718
TBPA6	Building and maintaining positive emotional connections with students is crucial for creating a welcoming classroom environment that reduces the likelihood of misbehavior.	.690	4.21	.703
TBPA7	Classroom rules, procedures, and expectations must be clearly communicated to students at the beginning of the school year to create a structured and predictable learning environment.	.601	4.17	.708
TBPA8	Engaging students in setting classroom rules, procedures, and expectations nurtures a supportive classroom environment by enhancing their sense of ownership and responsibility.	.567	4.17	.680
TBPA9	Teachers should consistently implement rules and procedures to foster an organized and effective classroom environment.	.617	4.27	.737
TBRA1	Escalating the severity of consequences is necessary if a student's misbehavior continues over time.	.462	4.20	.863
TBRA2	Assigning detention is an effective way to manage students who repeatedly misbehave.	.605	4.19	.724
TBRA3	Disruptive students should receive immediate corrective feedback to help them understand the impact of their actions.	.815	4.13	.895
TBRA4	Punitive measures, like sending students to the principal's office, play a significant role in effectively managing student disruptions in the classroom.	.735	4.14	.843
TBRA5	Restricting student access to classroom resources is an effective way to address misbehaviour.	.798	4.10	.922
TBRA6	Implementing disciplinary measures, such as suspension, is the only way to foster positive change in students' behavior.	.666	4.12	.935
TBRA7	Eliminating students who interrupt classroom lessons or group activities is an effective strategy for managing disruptive behaviour.	.802	4.10	.954
TBRA8	Contacting parents is an essential step in addressing students' persistent misbehaviour.	.727	4.12	.822
TBRA9	Punishing students with extra tasks or assignments during and after school as a consequence of misbehaviour is an effective strategy for addressing their behaviour.	.663	4.03	.803

Note. FL – Factor Loadings; M – Mean; SD – Standard Deviation

Standardized factor loadings for the indicators of TBPA ranged from .497 to .694, with the few lowest values

falling below the recommended threshold of .60. Given its weak contribution to the construct, TBPA3 (.497) was removed. Similarly, TBRA factor loadings ranged from .462 (TBRA1) to .815, and TBRA1 was removed due to its poor loading of .462. TBRA accounted for 31.801% of the variance, while TBPA contributed 15.695%, resulting in a combined explanation of 47.496% of the total variance in the CMB construct. Although this falls slightly short of the 50% benchmark, it remains close enough to suggest that the EFA model adequately supports the hypothesized two-factor structure of the TB scale, as in social sciences, factors explaining at least 40%–50% of the variance are generally considered acceptable (Hair et al., 2019; Tabachnick & Fidell, 2013).

Notably, in the EFA model of the TB scale, some items of TBRA and TBPA showed factor loadings in the .60s range. According to Field (2013) and Hair et al. (2019), while a loading of .70 or higher is ideal, loadings of .60 or above still indicate a moderate to strong relationship between the item and its underlying factor, especially in social science research, where constructs tend to be complex. Although TBPA8 had a loading of .567, which is well below the .60 threshold, its removal was not recommended because it did not improve the model. Therefore, it is assumed that keeping it will not necessarily weaken the model's strength. Overall, the items TBPA1, TBPA2, TBPA4, TBPA5, TBPA6, TBPA7, TBPA8, and TBPA9 (n = 8) from the proactive belief construct and the items from TBRA2 to TBRA9 (N = 8) from the reactive belief construct were retained in the final TB scale, resulting in a 16-item TB construct.

Evaluation of the Measurement Models the ICMSE, TP and TB

Three separate models involving the 23-item four-factor ICMSE scale, the 11-item unidimensional TP scale, and the 16-item two-factor TB scale were tested using CFA in IBM SPSS AMOS (v. 23). The model fit indices, including CMIN/df (normed chi-square), Tucker-Lewis Index (TLI), Comparative Fit Index (CFI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean Square Residual (SRMR), are shown in Table 4.

The ICMSE model demonstrates an excellent fit to the data, as shown by its fit indices: CMIN/df = 1.388, TLI = .979, CFI = .981, RMSEA = .028, SRMR = .050, although with a significant chi-square value ($\chi^2_{(226)} = 313.718$, $p < .05$), which may be an issue with large samples and that the deviation is not a big issue, as the relative χ^2 exceeded the recommended threshold of ≤ 2.0 for good fit (Kline, 2016; Schumacker & Lomax, 2010).

The MM1 of TP did not fit the data well due to poor loadings of some items. There was a slight improvement in model fit after removing TP6 due to its loading, which was far below the recommended threshold of $\geq .60$ (.586), as shown by the following fit indices: $\chi^2_{(35)} = 212.987$, $p < .001$; CMIN/df = 6.085; TLI = .902; CFI = .924; RMSEA = .103; and SRMR = .0515. The maximum indices still did not meet the recommended standards. Therefore, only minor modifications were made, rather than a full overhaul. Specifically, two adjustments involved covarying error variances to improve the fit further. The MM2 showed a good fit, with $\chi^2_{(33)} = 99.506$, $p < .001$, CMIN/df = 3.015, TLI = .961, CFI = .971, RMSEA = .065 (acceptable, since it is $\leq .08$), and SRMR = .0347, meeting the recommended criteria.

The MM with the 16-item, two-factor TB moderately fit the data with good fit indices of CMIN/df = 2.564, RMSEA = .057, and SRMR = .0325, except for TLI (.941), and CFI (.949), which were below the benchmarks of $\geq .95$. Although the TLI and CFI were slightly below the recommended .95 thresholds, they are within the acceptable range ($> .90$). Considering the satisfactory values of RMSEA, SRMR, and factor loadings, the measurement model can be regarded as adequately fitting the data.

Table 4: Model Fit Indices for Latent Constructs

Model Fit Index	Construct				Recommended Thresholds	Source
	ICMSE	TP	CM	MM1		
MM1	MM1	MM2	MM1			
CMIN/df	1.388	6.085	3.015	2.564	≤ 2 perfect fit ≤ 3 acceptable fit ≤ 5 upper limit	Byrne (2016), Tabachnick & Fidell (2019), Kline (2016)
TLI	.979	.902	.961	.941	$\geq .95$ excellent fit $\geq .90$ acceptable	Hu & Bentler (1999) and Kline (2016)
CFI	.981	.924	.971	.949	$\geq .95$ excellent fit $\geq .90$ acceptable	Hu & Bentler (1999) and Kline (2016)
RMSEA	.028	.103	.065	.057	$\leq .06$ good fit	Hu & Bentler (1999) and Kline (2016)
SRMR	.050	.0515	.0347	.0325	$\leq .08$ good fit	Hu & Bentler (1999)

χ^2 (df, <i>p</i>)	313.718 (226, <i>p</i> < .05)	212.987 (35, <i>p</i> < .001)	99.506, (33, <i>p</i> < .001)	264.098 (103, <i>p</i> < .001)	Non-significant	Byrne (2016), Kline (2016)
--------------------------	-------------------------------------	----------------------------------	-------------------------------	-----------------------------------	-----------------	----------------------------

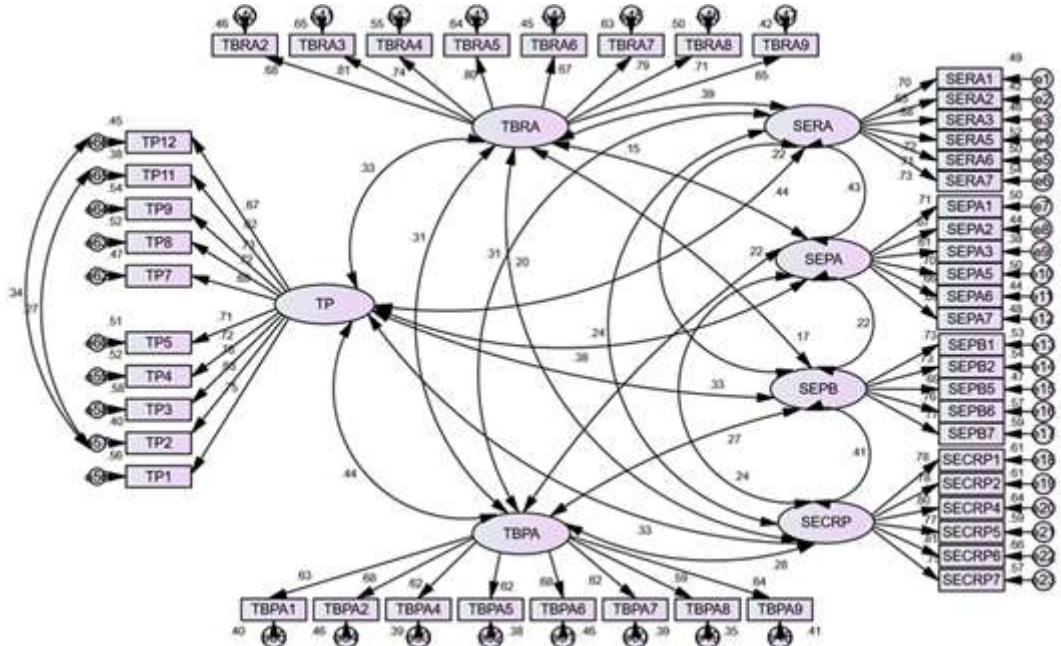
Standardized factor loadings (λ), the squared multiple correlation (R^2), representing the variance in an indicator explained by the latent construct, and their respective latent constructs are given in Table 5. Higher R^2 values indicate a stronger relationship between the latent construct and its indicators, showing how well the model accounts for the variance in each construct.

Table 5: Standardized Factor Loadings and R^2 for the Corresponding Latent Constructs

Construct	Latent Factor	Item Number	N	Std. λ (range)	R^2
ICMSE	SERA	1,2,3,5,6,7	6	.640 – .738	.290
	SEPA	1,2,3,5,6,7	6	.613 – .710	.292
	SEPB	1,2,5,6,7	5	.684 – .765	.279
	SECRP	1,2,4,5,6,7	6	.750 – .815	.312
TP	Single Factor	1,2,3,4,5,7,8,9,11,12	10	.609 – .763	.491
CMB	TBPA	1,2,4,5,6,7,8,9,	8	.564 – .696	.395
	TBRA	2,3,4,5,6,7,8,9	8	.651 – .806	.537

All factor loadings for the ICMSE were statistically significant, with indicators showing strong associations with their respective latent constructs: SERA (standardized $\lambda = .640 – .738$), SEPA (standardized $\lambda = .613 – .710$), SEPB (standardized $\lambda = .684 – .765$), and SECRP (standardized $\lambda = .750 – .815$), all above the threshold of $\geq .60$, confirming the model's validity. SECRP (.312) has the highest variance explained among the four latent constructs, signifying the most significant relationship with its indicators. Conversely, SEPB (.279) has the lowest variance explained, while SERA (.290) and SEPA (.292) are in between. Generally, R^2 values above .30 are considered strong in social science research, whereas values above .20 are acceptable depending on the context (Hair et al., 2019). These findings suggest that additional factors may influence these constructs beyond what the model captures, pointing to potential areas for refinement.

All the indicators were statistically and significantly loaded onto the TP with standardized lambda values ranging from .609 to .763, surpassing the threshold of .60. The R^2 values for the indicators varied from .371 (TP11) to .582 (TP3), demonstrating moderate to strong relationships with the latent variable. The average R^2 was .491, indicating that, on average, approximately 49.1% of the variance in the indicators was explained by the TP. This indicates a reasonably strong model fit, demonstrating the explanatory power of the latent variable over its observed indicators.


Although TBPA8 had a low standardized lambda value of .564, which fell below the threshold of .60 and may have contributed to the low variance explained by the construct, its deletion was not justified since removing it did not significantly increase the variance. Furthermore, removing it would deviate from the scale's theoretical foundation. Minor modifications could have improved the model fit slightly and increased the average variance explained by TBPA from 40% to 42.6%; however, these changes also led to decreased standardized lambda values for some indicators. Therefore, the 16-item, two-factor model was retained for further analysis without modifications.

The R^2 values indicated that TBPA accounted for an average of 39.54% of the variance in its observed indicators. TBRA explained an average of 53.65% of the variance in its respective indicators, indicating a moderate to high proportion of explained variance (Fornell & Larcker, 1981). This suggests that the model demonstrates acceptable levels of explanatory power for their observed variables.

Notably, further validation of the complete MM was conducted in two phases: one based on statistical evidence and the other on theoretical considerations. This is because, while the factor structures of TB and ICMSE were confirmed through both EFA and parallel analysis, the EFA results for TP were inconsistent: EFA indicated a two-factor solution, which is theoretically sound, whereas parallel analysis suggested a single-factor structure, statistically proven. Due to this discrepancy, the complete MM and subsequent path analyses were approached from both statistical and theoretical perspectives. This dual approach ensures that the findings are interpreted with a balanced view of empirical evidence and theoretical coherence (Byrne, 2010; Fabrigar et al., 1999; Henson & Roberts, 2006; Schmitt, 2011).

Data Analysis I

The full hypothesized MM (Figure 3) consists of a single-factor TP ($n = 10$) as a predictor, a two-factor TB with its two latent factors, TBPA ($n = 8$) and TBRA ($n = 8$) serving as mediators, and ICMSE ($n = 23$), which includes four latent factors: SERA ($n = 6$), SEPA ($n = 6$), SEPB ($n = 5$), and SECRP ($n = 6$) as outcome variables. Grounded in Bandura's Social Cognitive Theory (1977, 1997) and its extended version by Tschannen-Moran et al. (1998), this MM provides a comprehensive framework that integrates the key constructs of the study.

Figure 3: The Measurement Model with a Single-Factor TP as a Predictor

The results of CFA conducted on full MM indicate an excellent fit between the hypothesized model and the observed data, as demonstrated by the fit indices: $\text{CMIN}/\text{df} = 1.290$, $\text{TLI} = .967$, $\text{CFI} = .969$, $\text{RMSEA} = .025$, and $\text{SRMR} = .040$. All these indices meet the required thresholds, despite a statistically significant chi-square value ($\chi^2_{(1104)} = 1423.725$, $p < .000$) (Table 6). These fit indices suggest that the model effectively represents the relationships between the latent constructs and their indicators, as hypothesized.

Table 6. Model Fit Indices for the Measurement Model

Model	χ^2	CMIN/df	TLI	CFI	RMSEA	SRMR	Decision
MM	1423.725 (1104), $p < .000$	1.290	.967	.969	.025	.040	The Hypothesis is supported.

The model had statistically significant standardized lambda values for all the indicators, with a substantial number of indicators loaded adequately, ranging between .647 and .732 for SERA, .613 and .706 for SEPA, .686 and .767 for SEPB, .753 and .814 for SECRP, .595 and .682 for TBPA, .648 and .805 for TBRA, .618 and .759 for TP. However, the factor loadings for some items did not meet the threshold of $\geq .60$, the deletion of these items to improve their variances and factor loadings was negated, as the model perfectly fits the data.

The R^2 values for each indicator were computed to determine the variance explained by their respective latent constructs. The results indicated that the highest proportion of variance, exceeding the benchmark of 50%, was explained by SECRP (61.53%), followed by SEPB (54.16%) and TBRA (53.68%). The lowest variance was explained by TBPA, accounting for 40.50%. TP explained 49.24%, while SERA and SEPA accounted for 48.70% and 45.57% of the variance, respectively. The hypothesized model explained 50.03% of the total variance, which aligns with the structural equation modelling (SEM) guidelines of a benchmark greater than 50% explained variance. This suggests the overall model adequately accounts for the variance in their respective observed indicators (Hair et al., 2019). Therefore, the MM structure remains suitable for validating the multidimensional ICMSE, unidimensional TP, and multidimensional TB constructs.

Establishing the Psychometric Properties of the Study Constructs

The next step in the SEM process involved validating the MM to determine the psychometric properties of the

latent constructs, including their validity and reliability. Validation includes assessing convergent validity (CV) by measuring the Average Variance Extracted (AVE), as well as discriminant validity (DV) and internal consistency reliability, to make sure that the items accurately reflect their intended constructs. The AVE indicates that items within a construct share a high level of common variance, whereas the DV confirms that each construct is distinct from the others. Reliability is evaluated using Cronbach's α , Composite Reliability (CR), and McDonald's ω to ensure internal consistency. Meeting these criteria guarantees that the structural model analysis is based on solid and trustworthy measurements.

While all three reliability indicators evaluate how well the items within a construct measure the same underlying concept, each has its own strengths and limitations. Cronbach's α , the most commonly used measure of internal consistency, assumes tau-equivalence, meaning all items contribute equally to the latent construct with identical factor loadings. This assumption may not always hold in SEM, potentially leading to an underestimation of reliability when factor loadings vary. While CR does not assume tau-equivalence, it incorporates individual factor loadings into its calculation. McDonald's ω , on the other hand, offers more flexible and accurate reliability estimates by considering differences in factor loadings across items (Warne, 2025).

Table 7 shows the validity and reliability indices for the study's latent constructs. Cronbach's alpha and McDonald's omega values indicate strong reliability, confirming that the constructs are measured consistently with separate yet related factors (Field, 2013; Hair et al., 2019; Tabachnick & Fidell, 2013). McDonald's ω shows higher reliability than the other two measures, suggesting excellent internal consistency. Since each measure captures different aspects of internal consistency, reporting all three provides a more comprehensive view of the MM's reliability.

Table 7: Psychometric Evaluation Matrices for the Latent Constructs

Psychometric Evaluation Matrices	SERA	SEPA	SEPB	SECRP	TP	TBPA	TBRA	
Validity	AVE	.487	.456	.541	.615	.493	.405	.536
Internal	Cronbach's α	.857	.888	.871	.907	.908	.844	.901
Consistency	McDonald's ω	.857	.889	.872	.908	.908	.844	.902
Reliability	CR	.850	.834	.855	.905	.906	.845	.902

The results of AVE show that TBRA (AVE = .536), SEPB (AVE = .541), and SECRP (AVE = .615) had AVE values above the benchmark of .50, indicating strong CV, as the constructs adequately explain the variance in their indicators (Fornell & Larcker, 1981). SERA (AVE = .487) and TP (AVE = .493) had AVE values below, albeit close to the threshold of .50. The lower values of SEPA (AVE = .456) and TBPA (AVE = .405) indicate the constructs may not sufficiently explain the variance in their indicators.

Research indicates that AVE values below .50 can be acceptable if the overall model fit is good. For example, Fornell and Larcker (1981) state that AVE is important for assessing CV, with values above .50 showing that a construct accounts for more than half of the variance in its indicators. However, when AVE drops below this level, researchers should not automatically dismiss the construct if other fit indices (such as CFI, TLI, and RMSEA) suggest a good model fit.

Moreover, Hair et al. (2019) suggest that model fit indices and the reliability of the constructs (e.g., CR, factor loadings) should be prioritized when assessing construct validity. In such cases, the trade-off between AVE and model fit can be considered, especially if the constructs in question show satisfactory reliability (e.g., Cronbach's alpha above .70) and predictive power within the overall model. This approach aligns with Henseler et al. (2015), who argue that in variance-based SEM, such as Partial Least Squares (PLS), researchers may accept low AVE values if the model demonstrates a good fit and the construct remains robust in terms of other validity measures.

The Fornell-Larcker (F-L) criterion and the Heterotrait-Monotrait (HTMT) ratio were used to evaluate the DV. The F-L criterion is the conventional approach in covariance-based SEM (CB-SEM), as it aligns with the statistical assumptions underlying CB techniques (Fornell & Larcker, 1981; Kline, 2016). Since the study employs AMOS, a CB-SEM software, the F-L method is particularly relevant, as it is widely used for validating the distinctiveness of constructs within a CB framework (Hair et al., 2019).

The F-L criterion values, which determine DV by ensuring that each construct's square root of the AVE (\sqrt{AVE}) is \geq its correlations with other constructs, are presented in Table 8. The off-diagonal values represent the correlations between constructs, while the diagonal values are \sqrt{AVE} , demonstrating greater than or equal to the correlations. Consequently, the F-L criterion is met for all constructs, confirming that each construct shares more variance with its indicators than others, reflecting strong DV.

Table 8: Fornell and Larcker Criterion for the Latent Constructs

Factors	SERA	SEPA	SEPB	SECRP	TP	TBPA	TBRA
SERA	.698						
SEPA	.657	.675					
SEPB	.328	.271	.736				
SECRP	.278	.176	.459	.784			
TP	.546	.455	.314	.302	.702		
TBPA	.325	.255	.282	.234	.393	.636	
TBRA	.396	.182	.211	.183	.311	.279	.655

Research has shown that the F-L criterion often fails to detect a lack of DV, leading to false positives (assuming DV when it does not exist) (Henseler et al., 2015). Therefore, DV was further cross-validated with HTMT, the most reliable measure based on variance-based SEM, such as PLS, to enhance the credibility of the findings (Henseler et al., 2015). Typically, an HTMT value below .85 indicates that DV is supported, suggesting that the two constructs are distinct. In Table 9, all off-diagonal values representing the HTMT ratios fall well below the standard HTMT threshold of .85 (or .90 in more liberal criteria). This indicates strong DV among the model's constructs. It means that the constructs are distinct, with no substantial overlap or similarity, thereby supporting the validity of the MM.

Table 9: HTMT Values for the Individual Latent Constructs

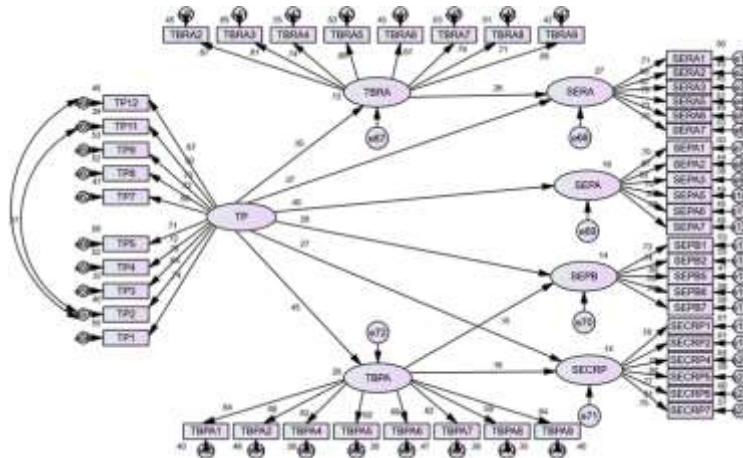
	SECRP	SEPA	SEPB	SERA	TBPA	TBRA
SEPA	.237					
SEPB	.418	.214				
SERA	.239	.423	.220			
TBPA	.281	.222	.276	.316		
TBRA	.210	.160	.179	.398	.324	
TP	.336	.403	.326	.447	.448	.347

RESULTS

The Results of Data Analysis I

A parallel multiple mediation model with validated latent constructs was tested using IBM SPSS AMOS (v. 23) software. This structural model (SM) includes a single-factor TP as the predictor, two-factor CMBs—TBPA and TBRA—as mediators, and four ICMSE factors—SERA, SEPA, SEPB, and SECRP—as outcomes to explore the causal mechanisms underlying these relationships. The model illustrates how TP indirectly affects the four ICMSE factors through CMB dimensions, TBPA, and TBRA. Bootstrapping the SEM involved 5,000 resamples to estimate the indirect effects of these eight parameters, and a bias-corrected 95% confidence interval was used to assess the statistical significance of the indirect effects. The path model demonstrated an acceptable model fit to the data, as hypothesized, with fit indices falling within the excellent range: $\chi^2_{(111)} = 1513.055$, $p < .001$, CMIN/df = 1.362, TLI = .959, CFI = .962, RMSEA = .027, and SRMR = .056.

The next step in the SEM procedure involves examining the statistical significance of path coefficients, which provide insights into the direction and magnitude of the model's direct and indirect effects. Table 10 shows the standardized and unstandardized path coefficients for the specific indirect effects through TBPA and TBRA.


Table 10: The Standardized and Unstandardized Path Coefficients for the Total Specific Indirect Effects via TBRA and TBPA Paths

Indirect Paths	B	β	CI		p-value	Interpretation
			LB	UB		
Specific Indirect Effects via TBPA Path						
TP → TBPA → SECRP	.090	.070	.026	.173	.003	A significant path
TP → TBPA → SEPB	.068	.068	.017	.137	.010	A significant path
TP → TBPA → SEPA	.024	.029	-.016	.071	.224	An insignificant path
TP → TBPA → SERA	.044	.045	-.006	.099	.079	An insignificant path
Specific Indirect Effects via TBRA Path						
TP → TBRA → SECRP	.035	.027	-.014	.093	.150	An insignificant path
TP → TBRA → SEPB	.016	.016	-.022	.058	.367	An insignificant path
TP → TBRA → SEPA	.007	.008	-.027	.045	.698	An insignificant path
TP → TBRA → SERA	.084	.086	.042	.141	.000	A significant path

The results indicate several statistically significant indirect paths as well as direct paths from TP to all four outcome variables. Specifically, the unstandardized path coefficient for the indirect effect of TP on SECRP via TBPA was .090 ($p < .01$, 95% CI [.026, .173]), while the effect on SEPB via TBPA was .068 ($p < .01$, 95% CI [.017, .137]). However, other indirect paths through TBPA were not statistically significant. Similarly, when TBRA functioned as a mediator, it significantly mediated only the effect of TP on SERA ($B = .084$, $p < .001$, 95% CI [.042, .141]), whereas the other paths remained nonsignificant.

These findings align with CM theory, highlighting that proactive CMBs influence proactive CMSE, while reactive CMBs shape reactive CMSE, suggesting the importance of developing proactive and reactive CMBs in PSTs to enhance their confidence in proactive efficacy beliefs. The insignificant paths were removed, based on this theoretical consideration and for model parsimony.

The model was re-estimated, which yields the trimmed model with excellent fit indices, including a significant chi-square value ($\chi^2_{(1116)} = 1520.540$, $p < .001$), CMIN/df = 1.362, TLI = .959, CFI = .961, RMSEA = .028, and SRMR = .0584 (Figure 4).

Figure 4: The Trimmed SM with Significant Path Coefficients Showing Direct and Mediation Effects

Table 11 displays the standardized and unstandardized path coefficients for direct and specific indirect effects, along with their confidence intervals and p -values for the trimmed SM. The specific indirect effects differed across various mediation paths. The results showed that $TP \rightarrow TBRA \rightarrow SERA$ ($B = .088$, $p = .000$, 95% CI [.046, .145]), $TP \rightarrow TBPA \rightarrow SEPB$ ($B = .071$, $p = .008$, 95% CI [.017, .137]), and $TP \rightarrow TBPA \rightarrow SECRP$ ($B = .096$, $p = .002$, 95% CI [.032, .178]) were statistically significant, as their confidence intervals did not include zero. This indicates that these paths serve a meaningful mediating role.

Table 11: The Standardized and Unstandardized Path Coefficients for Direct and Indirect Effects

Mediation Paths	Indirect effects <i>B</i>	CI		Indirect Effects β	Hypotheses	Interpretation
		LB	UB			
Specific Indirect Effects						
TP \rightarrow TBRA \rightarrow SERA	.088***	.046	.145	.090***	Accepted	Partial
Total Indirect Effect	.088***	.046	.145	.090***		
TP \rightarrow TBPA \rightarrow SEPB	.071**	.019	.140	.070**	Accepted	Partial
TP \rightarrow TBPA \rightarrow SECRP	.096**	.032	.178	.074**	Accepted	Partial
Total Indirect Effect	.166***	.065	.300	.144**		
Direct Effects						
	Estimate	S.E	C.R	<i>p</i> -value		
TP \rightarrow SERA	.361	.054	6.737	.000	Accepted	Partial
TP \rightarrow SEPA	.330	.046	7.210	.000	Rejected	Direct
TP \rightarrow SEPB	.279	.060	4.672	.000	Accepted	Partial
TP \rightarrow SECRP	.355	.074	4.821	.000	Accepted	Partial

Note. ** $p < .01$, *** $p < .001$

The analysis further examined the direct effects of the predictor variables on the outcome variables. All direct effects, including $TP \rightarrow SERA$ ($B = .361$, 95% CI [.247, .487], $p = .000$), $TP \rightarrow SEPA$ ($B = .330$, 95% CI [.248, .419], $p = .000$), $TP \rightarrow SEPB$ ($B = .279$, 95% CI [.156, .408], $p = .000$), and $TP \rightarrow SECRP$ ($B = .355$, 95% CI [.186,

.522], $p = .000$), were statistically significant. These results indicate that, even after accounting for mediation effects, the predictor variables continue to have a strong direct effect on the outcome variables. These findings suggest partial mediation, as some specific indirect effects were significant, while the direct effects remained strong. This implies that while mediation mechanisms contribute to the observed relationships, the predictor variable TP had a substantial influence on ICMSE dimensions.

The specific indirect effect of TP on SERA via TBRA ($\beta = .090, p < .001$) is more substantial than its effect on SEPB ($\beta = .070, p < .01$) and SECRP ($\beta = .074, p < .01$) via TBPA, indicating a more substantial effect on reactive CMSE than self-efficacy in promoting prosocial behavior and enforcing classroom rules. However, the total indirect effect of TP on SERA via TBRA ($\beta = .090$) is lower than that of TP on SEPB and SECRP via TBPA ($\beta = .144$), likely due to the combined effect of TP on SEPB and SECRP. TP's total effect (direct plus total indirect effects) on SERA via TBRA is $\beta = .460$, whereas SEPB and SECRP via TBPA are $\beta = .346$ and $\beta = .348$, respectively. Overall, the mediation model shows that the total effect is $\beta = .460$ when TBRA serves as a mediator, compared to $\beta = .622$ when TBPA is the mediator, indicating that PSTs' proactive beliefs have a more substantial influence on shaping proactive CMSE than their reactive CMBs.

The Results of Data Analysis II

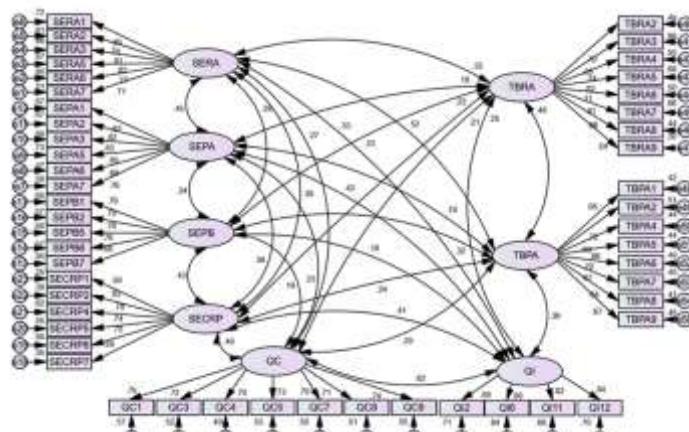
The cross-sectional, parallel multiple Mediation Path Analysis I with an 11-item, single-factor TP as the predictor was statistically significant. However, it was theoretically unsubstantiated, yielding several insignificant path coefficients with partial mediation effects of TBPA and TBRA, contradicting the hypothesized model. Therefore, a revised path analysis was conducted using an 11-item, two-factor TP in Data Analysis II. This two-factor solution was theoretically grounded, with Factor 1 representing Quality Content (QC) and Factor 2 representing Quality Instruction (QI). TP, therefore, assesses to what extent PSTs perceive their ITE courses, including CM components, as having content quality and quality instructional practices.

The results of EFA, conducted on an 11-item, two-factor TP, demonstrate that the indicators for the QC accounted for approximately 49% of the variance with factor loadings ranging between .647 (the lowest for QC4) and .797, while QI indicators accounted for approximately 7% of the variance with factor loadings ranging between .633 (the lowest for QI12) and .818, indicating adequate indicator reliability. The total variance explained by both constructs was approximately 56%, surpassing the threshold of 50%, deemed acceptable when extracting factors from psychological constructs, suggesting that the TP construct and its factor solution are appropriate for further CFA and path analysis (Costello & Osborne, 2005; Field, 2018; Hair et al., 2019).

The inter-factor correlation between QC and QI was .669, not exceeding the benchmark of .80, indicating a moderate relationship and suggesting two distinct constructs. The statistically significant Pearson's correlation coefficient of .649 ($p < .01$) between QC and QI further supported this relationship. Additionally, Cronbach's alpha values of .889 for QC and .852 for QI indicated good internal consistency for these two constructs.

CFA was conducted to confirm the 11-item, two-factor structure of the TP: QC (N = 7) and QI (N = 4), redefining the MM to include QC and QI as the predictors. The results (Table 12) demonstrated a good fit to the observed data, as indicated by the following fit indices: CMIN/df = 1.932; TLI = .980; CFI = .985; RMSEA = .044, and SRMR = .0286. All these indices meet the required thresholds, despite a statistically significant chi-square value ($\chi^2_{(43)} = 83.068, p < .001$), which is generally significant for large samples (Table 6). These fit indices suggest that the model effectively represents the relationships between the latent constructs and their indicators, as hypothesized. The standardized lambda values for all indicators were statistically significant, ranging from .691 to .766 for QC and from .706 to .796 for QI, indicating that the TP indicators adequately represent QC and QI.

Table 12. Model Fit Indices for the Measurement Model


Model	χ^2	CMIN/df	TLI	CFI	RMSEA	SRMR	Decision
MM	83.068 (43), $p < .001$	1.932	.980	.985	.044	.0286	The hypothesis is supported.

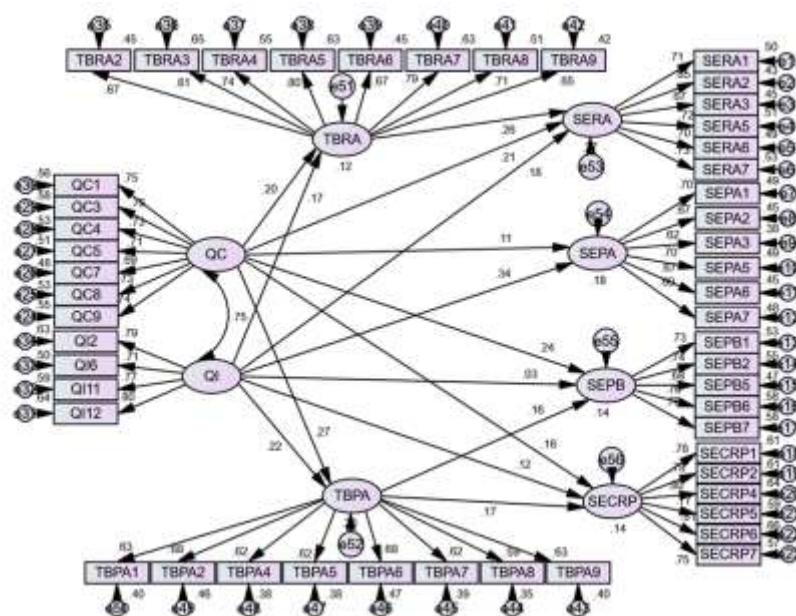
The full MM was redefined with a two-factor TP, using QC and QI as predictors, to ensure that the latent constructs explain more variance than error, compared to the previous single-factor solution (Figure 5). As hypothesized, the results demonstrate a good fit to the observed data with a statistically significant Chi-square value ($\chi^2_{(1147)} = 1419.998, p < .001$), CMIN/df = 1.238, TLI = .973, CFI = .975, RMSEA = .022, and SRMR = .0394 (Table 13), all of which adequately met the recommended thresholds. This suggests that the model adequately represents the relationships between the indicators and the latent constructs.

Table 13. Model Fit Indices for the Full Measurement Model

Model	χ^2	CMIN/df	TLI	CFI	RMSEA	SRMR	Decision
Full	1419.998	1.238	.973	.975	.022	.0394	
MM	(1147), $p < .001$						The hypothesis is supported.

While the standardized lambda values for the indicators of other latent constructs remained unchanged, the indicators of the TP construct loaded adequately onto their respective latent constructs, QC and QI, with statistically significant standardized lambda values. For QI, the values ranged from .706 to .797, indicating substantial contributions of the respective items (QI2, QI6, QI11, and QI12) to the construct. QC demonstrated standardized loadings ranging from .691 to .765, with all seven items (QC1, QC3, QC4, QC5, QC7, QC8, and QC9) exceeding the recommended threshold of .60, suggesting good indicator reliability and CV for the factors (Hair et al., 2019).

Figure 5: The Final MM with two-factor TP


The psychometric properties for QC and QI were well established with AVE values of .535 for QC and .590 for QI, and CR values of .890 for QC and .852 for QI. The HTMT was calculated to assess the DV between QC and QI. The results show the ratio of .444, well below the commonly accepted thresholds of .85 of Kline (2011) and .90 of Gold et al. (2001), indicating strong evidence of DV, suggesting that the constructs are empirically distinct. Thus, the refinement of the full MM with a two-factor TP enhanced the factor loadings, total variance explained, overall model fit, and the validity and reliability of TP, which had shown limitations when treated as a unidimensional construct.

Consequently, a parallel multiple mediation analysis was re-conducted using bootstrapping procedures (5,000 samples with 95% CI) with QC and QI as predictors. The path model had an excellent fit to the observed data, as reflected by fit indices, including a statistically significant chi-square value ($\chi^2(1154) = 1508.863, p < .000$), CMIN/df = 1.308, TLI = .965, CFI = .967, RMSEA = .025 and SRMR = .0544, all fall within the acceptable range, strengthening the credibility of the theoretical framework of Path Analysis II, which will allow for valid interpretation of the mediation effects (Table 14).

Table 14. Model Fit Indices for the Path Model

Model	χ^2	CMIN/df	TLI	CFI	RMSEA	SRMR	Decision
SM	1508.863 (1154), $p < .000$	1.308	.965	.967	.025	.0544	The hypothesis is supported.

The mediation analysis yields several significant and insignificant indirect path coefficients. Accordingly, the path model was retested after removing the insignificant paths (Figure 6). The model fit indices remain unchanged despite removing insignificant paths from the initial SM to improve the model's parsimony. This can be attributed to the fact that model fit indices, such as CFI, TLI, RMSEA, and SRMR, assess the model's overall fit by evaluating how well the proposed structure reproduces the observed covariance matrix, and removing insignificant paths was unlikely to contribute to the model's overall misfit. Hence, the trimmed model with all significant paths was theoretically meaningful and statistically equivalent in fit to the initial SM.

Figure 6: The Trimmed Path Model Showing the Significant Indirect Paths

Table 15 displays the unstandardized path coefficients for the direct and specific indirect effects. The results show that TBRA perfectly functioned as a mediator in the effect of QC ($B = 0.049$, 95% CI: [.011, .110], $p = 0.013$) and QI ($B = .037$, 95% CI: [.001, .094], $p = .042$) on SERA dimension, as the mediation effects were complete because the direct effects of QC ($B = .180$, 95% CI: [-.009, .361], $p = .059$) and QI ($B = .139$, 95% CI: [-.054, .340], $p = .152$) on SERA were statistically insignificant, while the mediation paths were significant.

Table 15: The Unstandardized Coefficients for the Specific Indirect Effects and Direct Effects

Mediation Paths	Unstd. Indirect effects (B)	CI		p-value	Type of Mediation Effect
		LB	UB		
Specific Indirect Effects					
QC → TBRA → SERA	.049	.011	.110	.013	Complete mediation
QC → TBPA → SEPB	.042	.009	.105	.009	Partial mediation
QC → TBPA → SECRP	.054	.011	.130	.006	Complete mediation
QI → TBRA → SERA	.037	.001	.094	.042	Complete mediation
QI → TBPA → SEPB	.030	.006	.084	.011	Complete mediation
QI → TBPA → SECRP	.039	.009	.102	.009	Complete mediation
Direct Effects					
QC → SERA	.180	-.009	.361	.059	Complete mediation
QC → SEPA	.073	-.093	.235	.389	Neither complete nor partial mediation
QC → SEPB	.234	.042	.451	.017	Partial mediation
QC → SECRP	.190	-.054	.456	.139	Complete mediation
QI → SERA	.139	-.054	.340	.152	Complete mediation
QI → SEPA	.248	.090	.423	.004	Direct effect only
QI → SEPB	.021	-.195	.205	.827	Complete mediation
QI → SECRP	.133	-.142	.365	.351	Complete mediation

This indicates that PSTs who perceive the content and instructional practices of the CM courses as high quality are more likely to develop their reactive CMSE by fostering their reactive CMBs, rather than through the direct effect of their perceptions of the CM courses. This suggests that reactive beliefs played a significant role in shaping their confidence in implementing reactive CM practices when they perceive CM courses as high-quality in terms of content and instruction.

Both QC and QI showed significant indirect effects on SEPB and SECRP through TBPA. Specifically, QC had indirect impacts on SEPB ($B = .042$, 95% CI [.009, .105], $p = .009$) and SECRP ($B = .054$, 95% CI [.011, .130], $p = .006$), with nonsignificant direct effect was observed only on SECRP ($B = .190$, 95% CI: [-.054, .456], $p =$

.139), indicating a complete mediation effect, and not on SEPB ($B = .234$, 95% CI: [.042, .451], $p = .017$), indicating a partial mediation.

A similar pattern was observed for the QI construct, where the TBPA showed significant indirect effects on SEPB ($B = .030$, 95% CI: [.006, .084], $p = .011$) and SECRP ($B = .039$, 95% CI: [.009, .102], $p = .009$), with the nonsignificant direct effects on SEPB ($B = .021$, 95% CI: [-.195, .205], $p = .827$) and SECRP ($B = .133$, 95% CI: [-.142, .365], $p = .351$), indicating its complete mediation effect on these construct.

Overall, the findings indicate that QC exerted a partial mediating effect on SEPB through TBPA, as both the direct and indirect paths were significant. On the other hand, QC impacted on SECRP through TBPA was complete, as only the indirect path was statistically significant. For QI, the nonsignificant direct paths alongside significant indirect effects indicate complete mediation on both SEPB and SECRP.

The overall mediation effects of TBPA and TBRA align with the CM theory, highlighting an association between reactive CMBs and reactive CMSE, as well as proactive CMBs and proactive CMSE. Notably, as mediators, both TBRA and TBPA functioned differently on the SEPA dimension, in which QC insignificantly impact SEPA directly ($B = .073$, 95% CI: [-.093, .235], $p = .389$), as well as indirectly ($B = .030$, 95% CI: [.006, .084], $p = .011$) insignificant influence, indicating neither partial nor complete mediation effect. On the contrary, QI had only a direct significant effect on SEPA ($B = .248$, 95% CI: [.090, .423], $p = .004$). This pattern of effects is consistent with the findings of Data Analysis I, which report that TP had no significant impact on SEPA.

Descriptive Statistics and Bivariate Correlations

A descriptive analysis was conducted to examine the perceptions of PSTs regarding CM courses, their CMBs, and ICMSE. Table 16 shows the bivariate correlations and descriptive statistics for the validated constructs. The mean scores for all latent factors were reasonably high, with TP ($M = 4.34$, $SD = .530$) having the highest mean, indicating positive perceptions of CM courses among respondents. The standard deviations suggest moderate variability, with SECRP ($SD = .759$) showing a reasonable spread. Inter-factor correlation coefficients revealed significant relationships among the validated constructs ($p < .01$, 2-tailed).

Table 16: Correlations and Descriptive Statistics for Scores of the Latent Constructs

Factors	1	2	3	4	5	6	7	8	9
1 SERA	--								
2 SEPA	.657**	--							
3 SEPB	.328**	.271**	--						
4 SECRP	.278**	.176**	.459**	--					
5 TP	.546**	.455**	.314**	.302**	--				
6 TBPA	.325**	.255**	.282**	.234**	.393**	--			
7 TBRA	.396**	.182**	.211**	.183**	.311**	.279**	--		
8 QC	.499**	.400**	.301**	.284**	-	.369**	.290**	--	
9 QI	.498**	.441**	.264**	.264**	-	.344**	.273**	.649**	--
N	6	6	5	6	11	8	8	7	4
M	4.32	3.91	4.07	4.07	4.34	4.22	4.12	4.33	4.36
SD	.579	.589	.651	.759	.530	.476	.665	.733	.722

Note. ** $p < .01$ (2-tailed); M – Mean; SD – Standard Deviation; N – number of items

Notably, the analysis showed a positive correlation between TBPA and TBRA, which could be theoretically inconsistent, as an increase in proactive beliefs might interfere with the development of reactive beliefs and vice versa. Ideally, teachers with strong beliefs in punishment-focused (reactive) CM approaches would be less likely to support preventative (proactive) strategies. A possible explanation is that, as novice teachers, PSTs may not yet have enough practical experience to clearly distinguish between these opposing approaches.

PSTs' Stronger Inclination: Proactive or Reactive Beliefs

A paired sample t -test was conducted to compare proactive and reactive CMBs. The results revealed a statistically significant difference between the two belief types, $t(479) = 3.157$, $p = .002$. The mean score for proactive beliefs ($M = 4.22$, $SD = .476$) was higher than that for reactive beliefs ($M = 4.12$, $SD = .665$), with a mean difference of .101 ($SD = .701$). The 95% confidence interval for the mean difference ranged from .038 to .164. These results indicate that PSTs in this study tended to hold stronger proactive beliefs compared to reactive ones.

Level of Inclusive Classroom Management Self-Efficacy

The descriptive analysis showed that the overall ICMSE mean score was 4.09, falling within the cutoff criteria of

3.50 – 4.32, indicating a moderately high level, with the mean scores for SERA 4.32 ($SD = .579$), SEPA 3.91 ($SD = .589$), SEPB 4.07 ($SD = .651$), and SECRP 4.07 ($SD = .759$). Among these, PSTs reported the highest self-efficacy in reactive actions and the lowest in proactive actions. Despite this variation, all mean scores fall within the moderately high range on the 6-point Likert scale.

DISCUSSION and CONCLUSION

The hypothesis that management beliefs mediate the relationship between PSTs' perceptions of CM courses, embedded in ITE curricula, and their confidence in managing inclusive classrooms was supported, although only partially. However, when participants perceived their CM courses to provide high-quality content and instruction, the mediation effect became complete. In those cases, proactive beliefs fully mediated the effect on PSTs' confidence in enforcing classroom rules and procedures, except for promoting students' prosocial behavior, where only partial mediation was observed. These findings, aligned with the integrated model of TSE (Tschannen-Moran et al., 1998), suggest that PSTs' proactive beliefs are a central driver of their confidence in implementing classroom rules; their perceptions of course quality become less directly relevant when proactive beliefs are well established.

Reactive beliefs partially mediated the effect of CM course perceptions on reactive efficacy, suggesting that other factors also contributed to the indirect effect. However, when pre-service teachers viewed their CM courses as providing high-quality content and instructional practices, the mediation effect was complete. This implies that high-quality training enhances the function of reactive beliefs as a pathway through which PSTs develop their reactive CMSE. In line with the integrated model of TSE, these findings suggest that the interaction between personal beliefs, contextual factors, and the interpretation of teaching experiences shapes reactive CMSE.

Overall, high-quality course content and instruction can serve as powerful mastery and vicarious experiences, which in turn reinforce beliefs about effective management strategies. When such beliefs align with practice expectations, they directly enhance efficacy for handling reactive classroom challenges. This highlights the importance of customizing ITE programs to strengthen particular aspects of self-efficacy based on PSTs' management beliefs.

The following discussion section covers the information in line with the study's research questions.

Perceived Effectiveness of CM Courses in ITE Programs

The present study found that PSTs generally held positive and consistent perceptions of their CM courses ($M = 4.34$, $SD = .53$). This result is somewhat unexpected, as Sri Lankan ITE programs do not offer discrete classroom or behaviour management courses. Instead, content is typically embedded within educational psychology or dispersed across other course units. In contrast, much of the international literature reports widespread concerns about the adequacy of CM preparation (Freeman et al., 2014; Emmer & Stough, 2001; O'Neill & Stephenson, 2011, 2012, 2014; Patterson & Seabrooks-Blackmore, 2017; Stough, 2006). Additionally, substantial studies emphasize that PSTs often feel underprepared to manage classrooms effectively, pointing to insufficient or fragmented course provision as a central issue (Greenberg et al., 2014; Livers et al., 2021; Oliver & Reschly, 2007).

However, some studies suggest that positive perceptions of CM preparation are possible, especially when coursework is seen as relevant, engaging, and connected to practice. Patterson and Seabrooks-Blackmore (2017) argue that the quality of instructional design—rather than just the existence of a course—significantly influences confidence and beliefs. These findings are consistent with the current study, where PSTs appear to value their CM preparation despite structural limitations in course offerings.

Taken together, the evidence presents a nuanced picture: while many international studies highlight gaps and weaknesses in CM training, especially when specific units are absent, the current results suggest that even embedded or psychology-based content can foster positive perceptions when delivered in a way that supports belief development and confidence. This indicates that PSTs' judgments of their preparation may depend not only on program structure but also on the perceived quality and relevance of the instruction they receive.

Nature of Proactive and Reactive CMBs Among PSTs

The finding of a significant difference between reactive and proactive beliefs, with a slightly higher level of proactive beliefs, suggests that PSTs rely more on proactive strategies than reactive ones. Although the difference is slight, the consistently higher score for proactive beliefs indicates a positive tendency toward preventative and student-centered approaches. However, reactive beliefs are still present, showing that PSTs also value corrective strategies when needed. Several studies support this finding, demonstrating that PSTs tend to favor proactive approaches. For example, Simonson et al. (2008) reviewed CM practices and found that PSTs and novice teachers

generally prefer proactive over reactive strategies. The authors argue that ITE is increasingly focusing on prevention to reduce behavioral problems before they escalate, which influences PSTs' beliefs.

While many studies report that PSTs generally prefer proactive CM strategies, other research indicates that they often enter ITE programs holding naïve, reactive beliefs. For example, Martin et al. (1998) and others found that PSTs initially favor immediate, punishment-oriented responses over preventive, proactive strategies (Berger et al., 2018; File & Gullo, 2002; Huang et al., 2019; Pajares, 1992; Parsonson, 2012; Soodak, 2003). Such response-based, discipline-oriented beliefs can persist despite ITE, highlighting the strong influence of pre-existing naïve beliefs on CM preferences. This complexity underscores the need for ITE programs to address both proactive and reactive belief systems in order to develop PSTs' CMSE and skills effectively.

The Level of ICMSE among PSTs

The results indicate that PSTs in this study generally demonstrated moderate to high levels of ICMSE, which is encouraging as higher self-efficacy is associated with greater teacher confidence and improved CM. Specifically, they hold stronger beliefs about reactive practices (SERA) than they do about the effectiveness of rule enforcement and improving students' prosocial behavior. The findings align with previous studies, which suggest that PSTs often rely on reactive approaches, potentially due to a limited emphasis on proactive strategies in their training (Martin et al., 1998; Yogarane, 2025). However, overall, ICMSE levels align with Simonsen et al. (2008), who emphasized the growing focus on inclusive, proactive management in modern teacher education. These findings highlight the need for ITE programs to strengthen practical opportunities that build PSTs' confidence in proactive management, alongside refining their reactive skills.

The Direct Influence of the Teacher Perceptions of CM Courses on ICMSE

The finding of the direct impact of TP on ICMSE implies that PSTs' overall course perceptions significantly influence all four ICMSE dimensions, with a notably more substantial effect on SERA compared to other proactive CM latent factors ($M = 0.361$, $SD = 1.183$). This supports Bandura's (1977, 1997) self-efficacy information principle, which states that positive mastery experiences in CM courses generally increase management self-efficacy. Previous targeted intervention studies also support these findings, showing the effect of CM training on CMSE (O'Neill, 2015; Patterson & Farmer, 2018; Patterson & Seabrooks-Blackmore, 2017; Yuksel, 2014). Additionally, several empirical studies confirm the stronger reactive efficacy, suggesting that ITE programs usually prepare PSTs with higher reactive than proactive CMSE (Main & Hammond, 2008; Yogarane, 2025).

This pattern of findings may be connected to the type of CM training offered by ITE institutions, which often focuses on reactive strategies, possibly because these are more visible and easier to teach within limited time frames. To support a more balanced CMSE, ITE programs should consider improving the curriculum and practicum experiences related to proactive strategies. This could result in more effective, anticipatory CM, reduce the frequency and severity of disruptive behaviors, and improve overall teaching effectiveness.

When QC and QI are examined separately, only QI shows a significant direct effect, specifically on SEPA. This suggests that instructional delivery has a more substantial impact on building confidence in specific CM areas than content alone, aligning with Tschannen-Moran and Woolfolk Hoy's (2001) perspective that high-quality instructional experiences shape self-efficacy. The lack of direct effects from QI on other ICMSE dimensions indicates CMBS probably mediate these influences, consistent with Buehl and Beck (2015) and Lazarides et al. (2024), who highlight the vital role of beliefs in developing self-efficacy.

Although PSTs perceived CM courses as having high-quality content, their effect on SEPA was not significant, suggesting that proactive CM strategies may require more than just theoretical exposure to be effective. Bandura (1997) argued that mastery experiences and modeling are crucial for developing strong efficacy beliefs, particularly in complex and proactive actions. These findings underscore the importance of interactive, practice-based learning in effectively building PSTs' confidence in CM in inclusive settings.

Mediating Role of Classroom Management Beliefs

When reactive and proactive CM beliefs served as mediators, with TP functioning as a single-factor predictor, the results show a stronger partial indirect effect of TP on reactive efficacy through reactive beliefs than on proactive efficacy through proactive beliefs, indicating PSTs' heavy reliance on reactive beliefs in shaping reactive efficacy. This effect may be caused due to their ingrained naïve beliefs that might have developed during early training, school observations, or cultural expectations, thereby reinforcing reactive strategies as a faster or more tangible way to manage classrooms (Berger et al., 2018; File & Gullo, 2002; Huang et al., 2019; Pajares, 1992; Parsonson, 2012; Soodak, 2003).

This pattern of mediation is supported by Baier-Mosch and Kunter's (2024) study, which found that PSTs' knowledge, based on their own schooling experiences, was predominantly focused on simple reactive strategies, rather than student-centered proactive measures. This suggests that PSTs may default to these reactive strategies due to their familiarity and perceived immediacy in addressing classroom disruptions. In contexts where order and discipline are culturally emphasized, such reliance on reactive beliefs becomes further reinforced, which helps to explain their stronger mediating role in the present study.

Comparatively, the strongest link between reactive beliefs and reactive efficacy, due to the influence of course perceptions, also indicates that although proactive strategies are emphasized in ITE, PSTs may still see reactive approaches as a necessary and unavoidable step for managing student behaviour challenges (Wang et al., 2020). These findings have specific implications for ITE, highlighting the importance of addressing both proactive and reactive beliefs. Developing proactive strategies remains essential to understanding how and why reactive beliefs influence self-efficacy, offering insights into narrowing the gap between theoretical training and real-life classroom challenges. Additionally, strengthening proactive efficacy could also support long-term teacher resilience, as it reduces teacher stress and burnout (Hattie, 2009).

Additionally, the partial mediation effects across all three indirect paths indicate that PSTs do not rely solely on their ITE with CM courses to develop their ICMSE; instead, their CMBs also play a role in forming this vital construct. The pattern of effects of CMBs can be explained by Bandura (1997), who states that self-efficacy develops through four main mechanisms: mastery experiences, vicarious learning, social persuasion, and physiological states. PSTs, especially those in senior cohorts with more exposure to these sources of information that provide practical classroom experience, are more likely to face real-world teaching challenges, enabling them to gain mastery experiences that influence their CMSE.

Main and Hammond (2008) and Tschannen-Moran and Woolfolk Hoy (2001) further argue that self-efficacy develops as teachers gain direct teaching experience through a practicum. PSTs with mastery experiences are more likely to develop CMSE with less reliance on their CMBs. Conversely, those lacking such experiences may depend more heavily on their CMBs, which are a strongly developed construct early in their careers, rather than on the domain- and task-specific CMSE when making self-efficacy judgments. Although CMBs did not fully serve as a mediator, failing to thoroughly explain the mediation pathway, the findings have implications for ITE. The focus should be on building strong CMBs early in training, allowing these beliefs to evolve with experience, and enhancing CMSE for effective management practices.

The mediation analysis with a two-factor TP demonstrated that both TBRA and TBPA significantly mediated the impact of QC and QI on the three dimensions of ICMSE, but not on SEPA. Specifically, the indirect effect of QC on SERA via TBRA was significant and fully mediated, indicating that the perception of course content quality enhances PSTs' self-efficacy in managing reactive classroom situations by shaping their beliefs about reactive strategies. This finding is consistent with those of O'Neill and Stephenson (2014), who emphasized that course content directly influences teachers' reliance on reactive management practices.

A similar pattern of the indirect effect was observed by QI through TBRA on SERA, suggesting that the quality of instructional delivery mainly boosts self-efficacy in reactive management through belief formation rather than direct experience. According to Bandura's (1997) social cognitive theory, belief systems are powerful mechanisms through which vicarious learning and verbal persuasion (often embedded in instructional quality) enhance self-efficacy.

Furthermore, the mediating effects of proactive beliefs were observed across multiple pathways. The influence of QC on SEPB was partly mediated through TBPA, indicating that PSTs do not solely depend on their perception of the quality of the CM course content to develop SEPB. TBPA also significantly contributes to this relationship. This may be because proactive beliefs about building positive student relationships, encouraging cooperative behaviors, and creating supportive classroom environments act as internal motivators that guide PSTs to consistently apply proactive strategies, even beyond what is explicitly taught in ITE.

Interestingly, the complete mediation of TBPA in the effect of QI on SEPB and SECRP suggests that PSTs' confidence in enforcing rules and procedures and promoting students' prosocial behavior can be enhanced when their proactive beliefs are strengthened. These proactive beliefs appear to develop when PSTs perceive the instructional practices delivered by their teacher educators as high-quality, which indicates that the quality of instruction in CM courses alone does not directly and significantly contribute to shaping PSTs' proactive CMSE. Instead, their proactive beliefs play a critical mediating role in this process.

This indirect effect helps clarify why many PSTs continue to depend heavily on reactive strategies despite reporting high levels of overall CMSE (Main & Hammond, 2008). The implication is that without strong proactive beliefs, even high-quality instructional exposure may not effectively translate into confident, proactive CM practices. Previous research emphasizes that beliefs about proactive strategies must be explicitly nurtured to shift reliance away from reactive approaches (O'Neill & Stephenson, 2014; Lewis & Sugai, 1999; Sugai & Simonsen, 2012). When PSTs genuinely believe in the effectiveness of proactive approaches, they are more likely to internalize and actively apply these strategies, which, in turn, strengthens their proactive efficacy. This internalisation process may be reinforced through reflective practices, peer discussions, and exposure to models of positive CM, indicating that belief transformation serves as a vital bridge between course exposure and confident classroom implementation (Bandura, 1997; Reupert & Woodcock, 2010).

Notably, the findings revealed that neither QC nor QI had significant direct or indirect effects on SEPA through TBPA or TBRA. This indicates that PSTs' self-efficacy in proactive actions is not substantially influenced by their perceptions of the quality of CM course content or its instructional delivery, nor by their beliefs about proactive or reactive management strategies in this model. This pattern suggests that SEPA may depend less on course-based learning or belief formation and more on mastery experiences gained through real-world teaching practicums (Bandura, 1997). Unlike reactive self-efficacy, which can develop through exposure to course examples or vicarious learning, proactive self-efficacy probably requires sustained, practical application in authentic classroom settings. PSTs may need hands-on opportunities to plan, implement, and adjust proactive strategies, such as lesson structuring, student engagement techniques, and preventative classroom routines, before they can build strong confidence in this area.

The CM courses in this study may have focused more on reactive strategies or behavioral management techniques rather than providing enough depth and practice for proactive planning. If proactive strategies are not clearly modeled, practiced, and reinforced during training, PSTs may struggle to internalize these approaches, thereby limiting the effectiveness of both QC and QI in SEPA. This result aligns with Reupert and Woodcock (2010), who argued that proactive management skills develop most effectively through repeated, supported practice in real teaching settings. Similarly, Lazarides et al. (2020) emphasized that proactive efficacy tends to grow more strongly through field-based experiences rather than coursework alone.

Overall, these findings underscore the importance of ITE programs in incorporating more authentic, experience-based learning opportunities, such as extended teaching practica, micro-teaching, and classroom simulations, which enable PSTs to actively develop, test, and refine proactive management strategies in practice, rather than relying solely on course exposure and confidence-building exercises.

Furthermore, while EFA and CFA in this study support the distinction among SEPA, SEPB, and SECRP, aligning with Bandura (1977, 1997) and others who argue that self-efficacy (and also CMSE) is domain- and task-specific, often criticizing global self-efficacy measures, some overlap in concepts may still exist (Pajares, 1996; Tschannen-Moran & Woolfolk Hoy, 2001). Typically, SEPB measures teachers' CMSE in promoting students' prosocial behavior, while SECRP focuses on enforcing classroom rules and procedures. Although part of proactive ICMSE, SEPA explicitly assesses PSTs' preventive strategies to stop student misbehavior before it happens.

Although these theoretical distinctions exist, how teachers interpret and apply these constructs in real settings may not always be clearly separated. This potential overlap might explain the non-significant indirect effect of TP on SEPA through TBPA, suggesting that participants may not have perceived TBPA as an intermediary between their perceptions and preventive actions. Since both TBPA and SEPA involve proactive strategies for managing student behavior, participants might have naturally linked their overall perceptions of CM directly to their preventive strategies, bypassing TBPA as a distinct mediator. This close conceptual relationship probably diminished the hypothesized indirect effect while still allowing a significant direct effect to be observed.

The overall findings build on Bandura's (1997) self-efficacy theory and include an integrated model of TSE. This model highlights teachers' beliefs about CM as a key mediator in shaping self-efficacy across various CM dimensions, clarifying the causal mechanisms. While Bandura's framework identifies four main sources of self-efficacy information, this study suggests that beliefs about CM may act as an additional factor influencing ICMSE. This means that PSTs' ICMSE is not only affected by direct experiences or external feedback but also by their core beliefs about CM strategies, which the integrated model supports. This demonstrates how PSTs interpret and internalize their perceptions of classroom events, potentially affecting the strength of their ICMSE.

These findings emphasize the importance of cognitive appraisal processes in developing ICMSE, an aspect that Bandura's original theory misses in the context of CM. This study broadens the theoretical understanding of

CMSE formation by showing that PSTs' beliefs about CM can serve as an intermediary step. ITE programs should prioritize increasing practical experiences and fostering positive and adaptable CMBs. Future research might investigate how different types of beliefs, such as those related to student behavior, discipline methods, and teaching strategies, interact with Bandura's traditional sources of self-efficacy to influence teacher development.

The study concludes that TP and its components, QC and QI, directly and indirectly influence ICMSE, as theorized. The role of CMBs as a mediator suggests that ICMSE does not develop solely from ITE and training experiences. Instead, PSTs must internalize and reinforce these beliefs for their ICMSE and translate them into effective CM practices. This underscores the importance of fostering strong, well-grounded, proactive, and reactive beliefs during their ITE.

RECOMMENDATIONS

Findings from this study, combined with insights from McGuire et al. (2024), underscore the need to improve the quality of CM course content and instruction. As such, this study recommends that CM training programs incorporate more practical, context-specific learning experiences, including coaching and real-world scenarios, to strengthen both reactive and proactive teacher beliefs and self-efficacy effectively.

Given the differentiated effects observed in proactive versus reactive beliefs and self-efficacy, the study recommends that ITE institutions offer CM courses explicitly emphasizing evidence-based, proactive strategies such as Positive Behavioral Interventions and Supports to better prepare PSTs for promoting positive behavior (Lewis & Sugai, 1999; Simonson et al., 2008; Sugai & Simonsen, 2012).

The findings of this study add to the existing literature with new insights into explaining the causes of PSTs' CMSE development in inclusive classrooms. This is not due to their direct experience with ITE programs, but rather how their CMBs influence this development. These insights underscore the importance of addressing PSTs' CMBs, along with their associated perceptions, when designing interventions to enhance CMSE for IE.

ITE programs should include structured opportunities that challenge and reshape CMBs, incorporating experiential learning through practicum or simulation, and enhancing reflective practices within ITE programs when developing IE policy and practice. Such initiatives can better prepare future teachers to manage inclusive classrooms effectively and confidently. Overall, by explaining this causal effect, the findings expand international scholarship and offer context-specific evidence from Sri Lanka.

LIMITATIONS

A key limitation of this study is the insufficient explanation of SEPA's role as an outcome influenced by TP, QC, and QI through CMBs. This raises concerns about whether the conceptualization of SEPA was fully developed or if it overlapped with other proactive ICMSE dimensions, specifically SEPB and SECRP. Although EFA and CFA supported their theoretical distinction, the potential overlap among proactive CMSE remains a concern since participants may have perceived these constructs as related, which could have affected the expected mediation pathways. Future research should further validate the distinctiveness of these proactive ICMSE dimensions and explore alternative conceptual or measurement approaches to minimize possible construct overlap.

The study has additional limitations that should be considered when interpreting the results. First, the findings are based on the performance of Tamil-speaking PSTs across ITE institutions in Sri Lanka, and the data were collected using the Tamil versions of the instruments, which limits the applicability of the findings to Sinhala-speaking PSTs and the broader global transcultural community. Therefore, it is recommended that this study be replicated using cross-culturally adapted and validated tools to expand the scope of the results.

Second, the use of a convenience sample limits the generalizability of the findings to the broader population. Random sampling enables the increase of generalizability, which was not feasible in this study; it relied on online data collection to secure a larger number of responses.

Another limitation is the use of a cross-sectional design to examine the mediating effect of CMBs. Although the analysis showed that CMBs statistically explain part of or the entire link between PST's course perceptions and ICMSE, this design cannot establish the sequence of events or causality among the variables. A longitudinal approach, measuring perceptions, beliefs, and CMSE at different times, would provide stronger evidence for the mediation pathways proposed in this study.

Lastly, the study relied on self-reported data, which may introduce response bias, as participants' perceptions and beliefs might not always match their actual classroom practices. These limitations can be addressed in future

research by using more qualitative approaches, such as observational methods, phenomenological interviews, or capturing lived experiences, as well as simulated experiences like teaching tasks, which could offer a more comprehensive view of CMBs and CMSE among PSTs.

REFERENCES

Abeywickrama, S. P., Jayasinghe, I. K., & Sumanasena, S. P. (2013). Excluded in inclusive schools: Experiences of children with disabilities, their families, and teachers in Sri Lanka. *Disability, CBR & Inclusive Development*, 24(1), 115–129. <https://doi.org/10.5463/dcld.v24i1.172>

Albayrak, D., & Ateskan, A. (2022). Classroom management in higher education: A systematic literature review. *Journal of Further and Higher Education*, 46(7), 1006–1022. <https://doi.org/10.1080/0309877X.2022.2038099>

Aloe, A. M., Shisler, S. M., Norris, B. D., Nickerson, A. B., & Rinker, T. W. (2014). A multivariate meta-analysis of student misbehaviour and teacher burnout. *Educational Research Review*, 12, 30–34. <https://doi.org/10.1016/j.edurev.2014.05.003>

Alter, P., & Haydon, T. (2017). School-based interventions for students with challenging behavior: A review of the literature. *Journal of Positive Behavior Interventions*, 19(3), 158–168. <https://doi.org/10.1177/1098300717695526>

Baier-Mosch, F., & Kunter, M. (2024). Pre-service teachers' knowledge about classroom management from university studies and own schooling experiences—content and effects of their activation. *Frontiers in Education*, 9, Article 1365005. <https://doi.org/10.3389/feduc.2024.1365005>

Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioural change. *Psychological Review*, 84(2), 191–215. <https://doi.org/10.1037/0033-295X.84.2.191>

Bandura, A. (1997). *Self-efficacy: The exercise of control*. W. H. Freeman.

Ben-Yehuda, S., Leyser, Y., & Last, U. (2010). Teacher educational beliefs and sociometric status of special educational needs (SEN) students in inclusive classrooms. *International Journal of Inclusive Education*, 14 (1), 17–34.

Berger, J.-L., Girardet, C., Vaudroz, C., & Crahay, M. (2018). Teaching experience, teachers' beliefs, and self-reported classroom management practices: A coherent network. *SAGE Open*, 8(1), 1–12. <https://doi.org/10.1177/2158244017754119>

Boateng, G. O., Neilands, T. B., Frongillo, E. A., Melgar-Quiñonez, H. R., & Young, S. L. (2018). Best practices for developing and validating scales for health, social, and behavioral research: A primer. *Frontiers in Public Health*, 6, 149. <https://doi.org/10.3389/fpubh.2018.00149>

Bosch, C., & Ellis, T. (2021). Using avatars to address teacher self-efficacy. *Journal of Technology and Teacher Education*, 5(1), Article 2. <https://doi.org/10.5038/2577-509X.5.1.1069>

Bottiani, J. H., Duran, C. A. K., Pas, E. T., & Bradshaw, C. P. (2019). Teacher stress and burnout in urban middle schools: Associations with job demands, resources, and effective classroom practices. *Journal of School Psychology*, 77, 36–51. <https://doi.org/10.1016/j.jsp.2019.10.002>

Brophy, J. E. (1982). *Classroom organization and management* (Occasional Paper No. 54). Institute for Research on Teaching, Michigan State University. <https://eric.ed.gov/?id=ED218257>

Brophy, J. (1987). Educating teachers about managing classrooms and students (Occasional Paper No. 115). Institute for Research on Teaching, College of Education, Michigan State University.

Brouwers, A., & Tomic, W. (1999). Teacher burnout, perceived self-efficacy in classroom management, and student disruptive behaviour in secondary education. *Curriculum and Teaching*, 14(2), 7–26. <https://doi.org/10.7459/ct/14.2.02>

Brouwers, A., & Tomic, W. (2000). A longitudinal study of teacher burnout and perceived self-efficacy in classroom management. *Teaching and Teacher Education*, 16(3), 239–253. [https://doi.org/10.1016/S0742-051X\(99\)00057-8](https://doi.org/10.1016/S0742-051X(99)00057-8)

Buehl, M. M., & Beck, J. S. (2015). The relationship between teachers' beliefs and teachers' practices. In H. Fives & M. G. Gill (Eds.), *International handbook of research on teachers' beliefs* (pp. 66–84). Routledge.

Byrne, B. M. (2010). *Structural equation modeling with AMOS: Basic concepts, applications, and programming* (2nd ed.). Routledge.

Canter, L. (1989). Assertive discipline: More than names on the board and marbles in a jar. *The Phi Delta Kappan*, 71(1), 57–61. <http://www.jstor.org/stable/20404058>

Clark, K. N., Blocker, M. S., Gittens, O. S., & Long, A. C. J. (2023). Profiles of teachers' classroom management style: Differences in perceived school climate and professional characteristics. *Journal of School Psychology*, 100, Article 101239. <https://doi.org/10.1016/j.jsp.2023.101239>

Clunies-Ross, P., Little, E., & Kienhuis, M. (2008). Self-reported and actual use of proactive and reactive classroom management strategies and their relationship with teacher stress and student behaviour. *Educational Psychology*, 28(6), 693–710. <https://doi.org/10.1080/01443410802206700>

Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. *Practical Assessment, Research & Evaluation*, 10(7), 1–9. <https://doi.org/10.7275/jyj1-4868>

DeVellis, R. F. (2016). *Scale development: Theory and applications* (4th ed.). Sage.

Dicke, T., Parker, P. D., Marsh, H. W., Kunter, M., Schmeck, A., & Leutner, D. (2014). Self-efficacy in classroom management, classroom disturbances, and emotional exhaustion: A moderated mediation analysis of teacher candidates. *Journal of Educational Psychology*, 106(2), 569–583. <https://doi.org/10.1037/a0035504>

Dignath, C., Rimm-Kaufman, S., van Ewijk, R., & Kunter, M. (2022). Teachers' beliefs about inclusive education and insights on what contributes to those beliefs: A meta-analytical study. *Educational Psychology Review*, 34(4), 2609–2660. <https://doi.org/10.1007/s10648-022-09695-0>

Doyle, W. (1986, December). *Classroom management techniques and student discipline* (Report prepared for the Student Discipline Strategies project). Office of Educational Research and Improvement.

Emmer, E. T., & Stough, L. M. (2001). Classroom management: A critical part of educational psychology, with implications for teacher education. *Educational Psychologist*, 36(2), 103–112. https://doi.org/10.1207/S15326985EP3602_5

Espelage, D. L., Anderman, E. M., Brown, V. E., Jones, A., Lane, K. L., McMahon, S. D., Reddy, L., & Reynolds, C. R. (2013). Understanding and preventing violence directed against teachers: Recommendations for a national research, practice, and policy agenda. *American Psychologist*, 68(2), 75–87. <https://doi.org/10.1037/a0031307>

Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. *Psychological Methods*, 4(3), 272–299. <https://doi.org/10.1037/1082-989X.4.3.272>

Field, A. (2013). *Discovering statistics using IBM SPSS statistics* (4th ed.). SAGE Publications.

File, N., & Gullo, D. F. (2002). A comparison of early childhood and elementary education students' beliefs about primary teaching practices. *Early Childhood Research Quarterly*, 17(1), 126–137. [https://doi.org/10.1016/S0885-2006\(02\)00130-8](https://doi.org/10.1016/S0885-2006(02)00130-8)

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39–50. <https://doi.org/10.1177/002224378101800104>

Freeman, J., Simonsen, B., Briere, D. E., & MacSuga-Gage, A. S. (2014). Pre-service teacher training in classroom management: A review of state accreditation policy and teacher preparation programs. *Teacher Education and Special Education*, 37(2), 106–120. <https://doi.org/10.1177/0888406413507002>

Gaias, L. M., Johnson, S. L., Bottiani, J. H., Debnam, K. J., & Bradshaw, C. P. (2019). Examining teachers' classroom management profiles: Incorporating a focus on culturally responsive practice. *Journal of School Psychology*, 76, 124–139. <https://doi.org/10.1016/j.jsp.2019.07.014>

Garwood, J. H., Harris, A. H., & Tomick, J. K. (2017). Starting at the beginning: An intuitive choice for classroom management. *Teacher Education and Practice*, 30, 77–97.

Giallo, R., & Little, E. (2003). Classroom behaviour problems: The relationship between preparedness, classroom experiences and self-efficacy in graduate and student teachers. *Australian Journal of Educational and Developmental Psychology*, 3, 21–34.

Goss, P., & Hunter, J. (2015). *Targeted teaching: How better use of data can improve student learning* (Grattan Institute Report No. 2015-6). Grattan Institute. <http://grattan.edu.au/report/targeted-teaching-how-better-use-of-data-can-improve-student-learning>

Greenberg, J., Putman, H., & Walsh, K. (2014). *Training our future teachers: Classroom management (Revised)*. National Council on Teacher Quality. https://www.nctq.org/dmsView/Training_Future_Teachers_Classroom_Management_NCTQ_Report

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate data analysis* (7th ed.). Pearson Prentice Hall.

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). *Multivariate data analysis* (8th ed.). Cengage Learning. <https://bit.ly/4k5Vjkq>

Hattie, J. (2009). *Visible learning: A synthesis of over 800 meta-analyses relating to achievement*. Routledge.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. *Journal of the Academy of Marketing Science*, 43(1), 115–135. <https://doi.org/10.1007/s11747-014-0403-8>

Henson, R. K. (2001, February 1–3). *Relationships between preservice teachers' self-efficacy, task analysis, and classroom management beliefs* [Conference presentation]. Annual Meeting of the Southwest Educational Research Association, New Orleans, LA. <https://files.eric.ed.gov/fulltext/ED450084.pdf>

Henson, R. K., & Roberts, J. K. (2006). Use of exploratory factor analysis in published research: Common errors and some practice recommendations. *Educational and Psychological Measurement*, 66(3), 393-416. <https://doi.org/10.1177/0013164405282485>

Hepburn, L., & Beamish, W. (2019). Influences on proactive classroom management: Views of teachers in government secondary schools, Queensland. *Improving Schools*, 23(1), 33-46. <https://doi.org/10.1177/1365480219886148>

Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. *Structural Equation Modeling*, 6, 1-55. <https://doi.org/10.1080/10705519909540118>

Huang, J., Wang, Y., & Teng, F. (2019). Understanding changes in teacher beliefs and identity formation: A case study of three novice teachers in Hong Kong. *Teaching Education*, 32(4), 402-415. <https://doi.org/10.1080/10476210.2019.1693535>

Kaiser, H. F. (1974). An index of factorial simplicity. *Psychometrika*, 39(1), 31-36. <https://doi.org/10.1007/BF02291575>

Karasova, J., & Nehyba, J. (2023). Student-centered teacher responses to student behavior in the classroom: A systematic review. *Frontiers in Education*, 8, Article 1156530. <https://doi.org/10.3389/feduc.2023.1156530>

Kaya, M., & Selvitopu, A. (2019). A meta-analysis of the effects of some factors on teachers' classroom management skills. *International Journal of Contemporary Educational Research*, 6(2), 409-425. <https://doi.org/10.33200/ijcer.621313>

Kline, R. B. (2016). *Principles and practice of structural equation modeling* (4th ed.). The Guilford Press.

Korpershoek, H., Harms, T., de Boer, H., van Kuijk, M., & Doolaard, S. (2016). A meta-analysis of the effects of classroom management strategies and classroom management programs on students' academic, behavioral, emotional, and motivational outcomes. *Review of Educational Research*, 86(3), 643-680. <https://doi.org/10.3102/0034654315626799>

Lambert, G., McCarthy, C., O'Donnell, M. et al. (2009). Measuring Elementary Teacher Stress and Coping in the Classroom: Validity Evidence for the Classroom Appraisal of Resources and Demands. *Psychology in the Schools*, 46, 973-988.

Landau, B. M. (2001, April 10-14). *Teaching classroom management: A stand-alone necessity for preparing new teachers* [Paper presentation]. Annual Meeting of the American Educational Research Association, Seattle, WA.

Lazarides, R., Watt, H. M. G., & Richardson, P. W. (2020). Teachers' classroom management self-efficacy, perceived classroom management and teaching contexts from beginning until mid-career. *Learning and Instruction*, 69, Article 101346. <https://doi.org/10.1016/j.learninstruc.2020.101346>

Livers, S. D., Zhang, S., Davis, T. R., Bolyard, C. S., Daley, S. H., & Sydnor, J. (2021). Examining teacher preparation programs' influence on elementary teacher candidates' sense of preparedness. *Teacher Education Quarterly*, 48(3), 29-52.

Lewis, T. J., & Sugai, G. M. (1999). Effective behavior support: A systems approach to proactive schoolwide management. *Focus on Exceptional Children*, 31(6), 1-24. <https://doi.org/10.17161/foec.v31i6.6767>

Main, S., & Hammond, L. (2008). Best practice or most practiced? Pre-service teachers' beliefs about effective behaviour management strategies and reported self-efficacy. *Australian Journal of Teacher Education*, 33(4). <https://doi.org/10.14221/ajte.2008v33n4.3>

Martin, N. K., & Baldwin, B. (1994, January 27-29). *Beliefs regarding classroom management style: Differences between novice and experienced teachers* [Conference presentation]. Annual Conference of the Southwest Educational Research Association, San Antonio, TX, United States. <https://files.eric.ed.gov/fulltext/ED387471.pdf>

Martin, N. K., Yin, Z., & Baldwin, B. (1998, April 13-17). *Classroom management training, class size, and graduate study: Do these variables impact teachers' beliefs regarding classroom management style?* Paper presented at the Annual Meeting of the American Educational Research Association, San Diego, CA. <https://eric.ed.gov/?id=ED420671>

Martin, N. K., Yin, Z., & Baldwin, B. (2016). Classroom management training, teaching experience, and gender: Do these variables impact teachers' attitudes and beliefs toward classroom management style? *The Teacher Educator*, 51(2), 154-172. <https://doi.org/10.1080/08878730.2016.1157317>

Marzano, R. J., Marzano, J. S., & Pickering, D. J. (2003). *Classroom management that works: Research-based strategies for every teacher*. Association for Supervision and Curriculum Development (ASCD).

McGuire, S. N., Meadan, H., & Folkerts, R. (2024). Classroom and Behavior Management Training Needs and Perceptions: A Systematic Review of the Literature. *Child & Youth Care Forum*, 53(1), 117-139. <https://doi.org/10.1007/s10566-023-09750-z>

Meijer, C. J. W., & Foster, S. F. (1988). The effect of teacher self-efficacy on referral chance. *Journal of Special Education*, 22(3), 378-385. <https://doi.org/10.1177/002246698802200309>

Nespor, J. K. (1985, January). *The role of beliefs in the practice of teaching: Final report of the Teacher Beliefs Study* (Research Report No. NIE-G-83-0006). Research and Development Center for Teacher Education, University of Texas at Austin. National Institute of Education.

New South Wales. Centre for Education Statistics and Evaluation, & New South Wales Department of Education. (2020, January 9). *Classroom management: Creating and maintaining positive learning environments*. NSW Department of Education. <https://education.nsw.gov.au/about-us/education-data-and-research/cese/publications/literature-reviews/classroom-management>

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components or factors. *Practical Assessment, Research, and Evaluation*, 7(1), 1-10.

Oliver, R. M., & Reschly, D. J. (2007). *Effective classroom management: Teacher preparation and professional development*. National Comprehensive Center for Teacher Quality. <https://files.eric.ed.gov/fulltext/ED543769.pdf>

Oliver, R. M., Wehby, J. H., & Reschly, D. J. (2011). *Teacher classroom management practices: Effects on disruptive or aggressive student behavior*. *Campbell Systematic Reviews*, 2011(4). <https://doi.org/10.4073/csr.2011.4>

O'Neill, S. C., & Stephenson, J. (2011). The measurement of classroom management self-efficacy: A review of measurement instrument development and influences. *Educational Psychology*, 31(3), 261-299. <https://doi.org/10.1080/01443410.2010.545344>

O'Neill, S., & Stephenson, J. (2012). Does classroom management coursework influence pre-service teachers' perceived preparedness or confidence? *Teaching and Teacher Education*, 28(8), 1131-1143. <https://doi.org/10.1016/j.tate.2012.06.008>

O'Neill, S. C., & Stephenson, J. (2014). Evidence-based classroom and behaviour management content in Australian pre-service primary teachers' coursework: Wherefore art thou? *Australian Journal of Teacher Education*, 39(4), 1-22. <https://doi.org/10.14221/ajte.2014v39n4.4>

Pajares, M. F. (1992). Teachers' beliefs and educational research: Cleaning up a messy construct. *Review of Educational Research*, 62(3), 307-332. <https://doi.org/10.3102/00346543062003307>

Pajares, F. (1996, April). *Assessing self-efficacy beliefs and academic outcomes: The case for specificity* [Conference presentation]. Annual Meeting of the American Educational Research Association, New York, NY.

Parker, P. D., Martin, A. J., Colmar, S., & Liem, G. A. (2012). Teachers' workplace well-being: Exploring a process model of goal orientation, coping behavior, engagement, and burnout. *Teaching and Teacher Education*, 28(3), 503-513. <https://doi.org/10.1016/j.tate.2012.01.001>

Parsonson, B. S. (2012). Evidence-based classroom behaviour management strategies. *Kairaranga*, 13(1), 16-23.

Patterson, T. T., & Farmer, A. (2018). Classroom management self-efficacy of pre-service teachers. *World Journal of Educational Research*, 5(2), 134-143. <https://doi.org/10.22158/wjer.v5n2p134>

Patterson, K., & Seabrooks-Blackmore, J. J. (2017). The effects of self-reflection and classroom management course on pre-service teachers' self-efficacy. *Journal of Theoretical Educational Science*, 10(3), 335-348. <https://doi.org/10.5578/keg.57464>

Pianta, R. C., Hamre, B. K., & Allen, J. P. (2012). Teacher-student relationships and engagement: Conceptualizing, measuring, and improving the capacity of classroom interactions. In S. L. Christenson, A. L. Reschly, & C. Wylie (Eds.), *Handbook of research on student engagement* (pp. 365-386). Springer. https://doi.org/10.1007/978-1-4614-2018-7_17

Polit, D. F., & Beck, C. T. (2006). The content validity index: Are you sure you know what's being reported? *Research in Nursing & Health*, 29(5), 489-497. <https://doi.org/10.1002/nur.20147>

Poulou, M. (2007). Personal teaching efficacy and its sources: Student teachers' perceptions. *Educational Psychology*, 27(2), 191-218. <https://doi.org/10.1080/01443410601066693>

Purniningtyas, A. K., Fauziati, E., & Rochsantiningsih, D. (2023). Enhancing classroom management self-efficacy through teacher professional education program: An explorative study. *Voices of English Language Education Society*, 8(3), 275-295. <https://doi.org/10.29408/veles.v8i3.27532>

Reupert, A., & Woodcock, S. (2010). Success and near misses: Pre-service teachers' use, confidence and success in various classroom management strategies. *Teaching and Teacher Education*, 26(6), 1261-1268. <https://doi.org/10.1016/j.tate.2010.03.003>

Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. Sikula (Ed.), *Handbook of research on teacher education* (2nd ed., pp. 102-119). New York: Macmillan.

Ritter, R., Wehner, A., Lohaus, G., & Krämer, P. (2019). Pre-service teachers' beliefs about inclusive education before and after multi-compared to mono-professional co-teaching: An exploratory study. *Frontiers in Education*, 4, Article 101. <https://doi.org/10.3389/feduc.2019.00101>

Sakthivel, Y. (2025). Development and Validation of the Tamil Inclusive Classroom Management Self-Efficacy (TICMSE) Scale. *International Journal of Assessment Tools in Education*, 12(3), 600-628

Schumacker, R. E., & Lomax, R. G. (2010). *A beginner's guide to structural equation modeling* (3rd ed.). Routledge. <https://doi.org/10.4324/9781841698908>

Sciuchetti, M. B., & Yssel, N. (2019). The development of preservice teachers' self-efficacy for classroom and behavior management across multiple field experiences. *Australian Journal of Teacher Education*, 44(6), Article 2. <https://doi.org/10.14221/ajte.2018v44n6.2>

Sharma, U., & Loreman, T. (2014). Teacher educator perspectives on systemic barriers to inclusive education. *International Journal of Inclusive Education*, 18(4), 329–344. <https://doi.org/10.1080/13603116.2013.769608>

Simonsen, B., Fairbanks, S., Briesch, A., Myers, D., & Sugai, G. (2008). Evidence-based practices in classroom management: Considerations for research to practice. *Education and Treatment of Children*, 31(3), 351–380. <https://doi.org/10.1353/etc.0.0007>

Sokal, L., Woloshyn, D., & Funk-Unrau, S. (2013). How important is practicum to pre-service teacher development for inclusive teaching? Effects on efficacy in classroom management. *Alberta Journal of Educational Research*, 59(2), 285–298. <https://doi.org/10.55016/ojs/ajer.v59i2.55680>

Soodak, L. C. (2003). Classroom management in inclusive settings. *Theory Into Practice*, 42(4), 327–333. <https://www.jstor.org/stable/1477396>

Stevenson, N. A., VanLone, J., & Barber, B. R. (2020). A commentary on the misalignment of teacher education and the need for classroom behavior management skills. *Education and Treatment of Children*, 43(4), 393–404. <https://doi.org/10.1007/s43494-020-00031-1>

Stough, L. M. (2006). The place of classroom management and standards in teacher education. In C. M. Evertson & C. S. Weinstein (Eds.), *Handbook of classroom management: Research, practice, and contemporary issues* (pp. 909–924). Lawrence Erlbaum Associates.

Stough, L. M., & Emmer, E. T. (1998). Teachers' emotions and test feedback. *International Journal of Qualitative Studies in Education*, 11(2), 341–361. <https://doi.org/10.1080/095183998236809>

Sugai, G., & Simonsen, B. (2012). Positive behavioral interventions and supports: History, defining features, and misconceptions. *Center on PBIS Newsletter*, 1(1), 1–4. <https://bit.ly/44f0PLx>

Sullivan, A. M., Johnson, B., Owens, L., & Conway, R. (2014). Punish them or engage them? Teachers' views of unproductive student behaviours in the classroom. *Australian Journal of Teacher Education*, 39(6), Article 4. <https://doi.org/10.14221/ajte.2014v39n6.4>

Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). Pearson.

Tschannen-Moran, M., & Woolfolk Hoy, A. (2001). Teacher efficacy: Capturing an elusive construct. *Teaching and Teacher Education*, 17(7), 783–805. [https://doi.org/10.1016/S0742-051X\(01\)00036-1](https://doi.org/10.1016/S0742-051X(01)00036-1)

Tschannen-Moran, M., Woolfolk Hoy, A., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. *Review of Educational Research*, 68(2), 202–248. <https://doi.org/10.3102/00346543068002202>

Tsouloupas, C. N., Carson, R. L., Matthews, R., Grawitch, M. J., & Barber, L. K. (2010). Exploring the association between teachers' perceived student misbehaviour and emotional exhaustion: The importance of teacher efficacy beliefs and emotion regulation. *Educational Psychology*, 30(2), 173–189. <https://doi.org/10.1080/01443410903494460>

Velicer, W. F., & Fava, J. L. (1998). Effects of variable and subject sampling on factor retention. *Psychological Methods*, 3(2), 231–251.

Wang, M. T., Degol, J. L., Amemiya, J., Parr, A., & Guo, J. (2020). Classroom climate and children's academic and psychological wellbeing: A systematic review and meta-analysis. *Developmental Review*, 57, 100912. <https://doi.org/10.1016/j.dr.2020.100912>

Warne, R. T. (2025, April 13). *Comparing Cronbach's alpha and McDonald's omega reliability values*. Warne Blog. <https://russellwarne.com/2025/04/13/comparing-cronbachs-alpha-and-mcdonalds-omega-reliability-values>

Woodcock, S., Gibbs, K., Hitches, E., & Regan, C. (2023). Investigating teachers' beliefs in inclusive education and their levels of teacher self-efficacy: Are teachers constrained in their capacity to implement inclusive teaching practices? *Education Sciences*, 13(3), Article 280. <https://doi.org/10.3390/educsci13030280>

Woodcock, S., Hemmings, B., & Kay, R. (2012). *Does study of an inclusive education subject influence pre-service teachers' concerns and self-efficacy about inclusion?* Australian Journal of Teacher Education, 37(6). <https://doi.org/10.14221/ajte.2012v37n6.5>

Woolfolk Hoy, A. (2000). *Changes in teacher efficacy during the early years of teaching* [Paper presentation]. Annual Meeting of the American Educational Research Association, New Orleans, LA

Woolley, S. L., Benjamin, W. J. J., & Woolley, A. W. (2004). Construct validity of a self-report measure of teacher beliefs related to constructivist and traditional approaches to teaching and learning. *Educational and Psychological Measurement*, 64(2), 319–331. <https://doi.org/10.1177/0013164403261189>

Yılmaz, H., & Huyugüzel Çavaş, P. (2008). The effect of the teaching practice on pre-service elementary teachers' science teaching efficacy and classroom management beliefs. *Eurasia Journal of Mathematics, Science & Technology Education*, 4(1), 45–54. <https://doi.org/10.12973/ejmste/75333>

Yogaranee, S. (2024). Perspectives of pre-service and in-service general education teachers of the Faculty of Education on inclusive education: A phenomenological study. *Research Journal of Educational Sciences*, 12(2), 1–14. <https://www.isca.me>

Yogaranee, S. (2025). How do pre-service teachers perceive their teacher education courses? The impact on inclusive classroom management self-efficacy. *Journal of Education and Training Studies*, 13(1), 1-14. <http://doi.org/10.11114/jets.v13i1.7271>

Yüksel, İ. (2014). Investigating the impact of classroom management course on self-efficacy levels: An experimental study on pre-service teachers. *Education and Science*, 39(171), 259–272.

Enhancing Vocational Graduate Employability through Mobile Application on Advanced Quantitative Modeling of Skills and Partnerships

Yang WANG

Vocational Education Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.

wang_ya@mail.rmutt.ac.th, ORCID:0009-0000-3789-7964

Thosporn SANGSAWANG

Educational Technology and Communications Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani 12110, Thailand.

**corresponding author: sthosporn@rmutt.ac.th, ORCID:0000-0002-7926-6949*

Abstract

This study investigates the multidimensional factors influencing employability among vocational students in China by applying an advanced quantitative framework. Data were collected from 17 experts, 100 faculty members, and 30 students, and analyzed using a sequential process of Exploratory Factor Analysis (EFA), Confirmatory Factor Analysis (CFA), and Structural Equation Modeling (SEM). EFA extracted six constructs- Professional Skills, Soft Skills, Career Guidance, Industry-Academia Collaboration, Technological Literacy, and Employability Outcomes-explaining 72.6% of total variance. CFA confirmed measurement validity and reliability (Cronbach's α > 0.80; CR > 0.84; AVE > 0.50; HTMT < 0.85). SEM results demonstrated that all hypothesized relationships were supported, with Soft Skills (β = 0.35) identified as the strongest predictor of employability, followed by Professional Skills (β = 0.29), Technological Literacy (β = 0.24), Industry-Academia Collaboration (β = 0.21), and Career Guidance (β = 0.18). Mediation analysis revealed that Career Guidance indirectly influenced employability through Soft Skills (β = 0.12, p < 0.01), while moderation analysis confirmed that Industry-Academia Collaboration enhanced the effect of Professional Skills on employability (β = 0.09, p < 0.05). The structural model accounted for 68% of variance (R^2 = 0.68) in employability outcomes, demonstrating strong explanatory power. The novelty of this research lies in integrating mediation and moderation mechanisms within a validated employability model, moving beyond traditional exploratory methods. Conceptually, the findings highlighted the centrality of Soft Skills in determining employability, challenging the dominance of technical training in vocational education. Practically, the study provides evidence-based recommendations for balancing technical and soft skill training, strengthening career guidance services, and deepening industry-academia partnerships to enhance graduate competitiveness in dynamic labor markets through a Mobile Application on Advanced Quantitative Modeling of Skills and Partnerships.

Keyword: Industry-Academia Collaboration; Technological Literacy; Exploratory Factor Analysis; Mobile Application

Introduction

Vocational education has emerged as a crucial driver for bridging the gap between academic learning and labor market requirements, especially in countries experiencing rapid economic growth such as China [1]. With the transition from elite to mass higher education in the 1990s, the number of graduates has surged dramatically, reaching over 11 million in 2023, thereby intensifying job market competition [2]. This massification of higher education has created an unprecedented challenge: many graduates face unemployment or underemployment due to the misalignment between acquired academic qualifications and the dynamic needs of the labor market [3].

Scholars and policymakers agree that employability is a multidimensional construct that extends beyond technical competence [4]. It encompasses soft skills, adaptability, problem-solving, resilience, career planning, industry exposure, and technological literacy [5]. Employers increasingly emphasize interpersonal communication, teamwork, creativity, and digital readiness as essential attributes [6]. However, research indicates that many higher vocational colleges in China continue to focus primarily on theoretical instruction and do not adequately integrate practical training, career guidance, or industry collaboration into their curricula [7]. This mismatch not only undermines graduates' career prospects but also restricts the country's ability to cultivate a globally competitive workforce.

To address this issue, the Chinese government has enacted multiple policies such as the 2015 *Opinions on Strengthening the Employment of University Graduates* and the 2020 *Notice on Doing a Good Job in Graduate*

Employment and Entrepreneurship [8]. These initiatives emphasize job training, entrepreneurial support, and career guidance. While such policies have advanced employability services, existing academic research has largely relied on exploratory methods such as descriptive analysis and exploratory factor analysis (EFA) to identify determinants of employability [9]. These methods are useful for identifying factors but are limited in their ability to test causal relationships and validate multidimensional constructs across diverse student populations.

This study introduces a novel framework by integrating advanced quantitative methodologies including exploratory factor analysis (EFA), confirmatory factor analysis (CFA), and structural equation modeling (SEM). Unlike prior studies that stop at identifying factors, this research validates the employability model through CFA and examines causal pathways among variables using SEM [10]. For instance, the study tests how *career guidance* indirectly shapes employability through the development of *soft skills*, while *industry-academia collaboration* moderates the relationship between *professional skills* and employment outcomes. This multi-layered approach not only identifies which factors matter most but also explains how and why they influence employability.

The novelty of this research lies in three dimensions. First, it provides a validated and multidimensional employability model for vocational colleges in China, bridging a methodological gap by moving beyond EFA toward SEM-based causal modeling. Second, it introduces mediation and moderation analysis to reveal indirect and conditional effects, offering a richer understanding of how factors interact to enhance employability. Third, it grounds its framework in both theoretical foundations (Bloom's mastery learning, constructivist theory, and new constructivist learning) and policy relevance, ensuring that findings are both academically rigorous and practically applicable to curriculum reform and labor market alignment.

By applying this advanced framework, the study contributes to both theory and practice. Theoretically, it extends employability research through validated constructs and tested causal relationships. Practically, it offers vocational institutions evidence-based strategies to redesign curricula, strengthen industry linkages, and embed employability training into education systems. Policymakers and educators can leverage these insights to develop targeted interventions that improve graduate outcomes and strengthen national human capital development [11].

Literature Review

Employability research consistently underscores the importance of professional skills and practical training as foundational elements of career readiness. Graduates who possess strong technical expertise and have undergone structured training programs, such as internships and apprenticeships, demonstrate smoother transitions into the labor market [12]. In China, however, higher vocational colleges often emphasize theoretical instruction while offering limited opportunities for practice-based learning [13]. This imbalance reduces graduates' ability to apply their knowledge in real-world contexts and diminishes their attractiveness to employers who prioritize job-specific competencies [14]. Moreover, empirical studies indicate that practical exposure to industry projects not only enhances technical proficiency but also instills problem-solving capacity and workplace adaptability [15].

Hypothesis 1 (H1): Professional skills and practical training have a positive and significant effect on graduate employability.

While technical expertise is critical, employers increasingly highlight the importance of soft skills, such as communication, teamwork, leadership, creativity, and resilience [16]. Graduates with strong interpersonal attributes are more capable of navigating complex workplace environments and adjusting to rapidly changing job demands [17]. Studies across diverse contexts reveal that soft skills are often the decisive factor in hiring decisions, as they complement technical knowledge and ensure long-term career growth [18]. However, many vocational institutions still lack structured curricula for cultivating these skills, resulting in graduates who are technically competent but lack essential interpersonal competencies [19]. Given the labor market's preference for holistic graduates, soft skills development emerges as a central pillar of employability.

Hypothesis 2 (H2): Soft skills and personal attributes positively influence graduate employability.

Career guidance is widely acknowledged as a strategic mechanism for supporting students' transition from education to employment [20]. Services such as career counseling, job fairs, and training in job search strategies equip students with knowledge about labor market trends and practical skills for navigating recruitment processes [21]. In China, national policies have prioritized the expansion of career guidance, but implementation remains uneven across institutions, with significant disparities in service quality [22]. Research indicates that students who actively engage with career planning resources exhibit greater confidence, more realistic career expectations, and improved employability outcomes [23]. Furthermore, career guidance does not operate in isolation; it strengthens employability indirectly by enhancing soft skills through improved self-awareness and decision-making.

Hypothesis 3 (H3): Career guidance and job market awareness positively affect graduate employability.

Hypothesis 3a (H3a): The effect of career guidance on employability is mediated by soft skills development. Industry-academia collaboration plays a vital role in aligning educational curricula with labor market demands. Partnerships with employers allow vocational colleges to offer cooperative education programs, embed industry-relevant projects, and involve practitioners in curriculum design [24]. Such collaborations expose students to authentic workplace experiences and provide networking opportunities that directly enhance employability [25]. Empirical findings reveal that institutions with stronger ties to industry produce graduates who are better prepared for employment, as their training reflects current technological and professional standards [26]. Moreover, collaboration may act as a contextual enabler: when vocational institutions work closely with industries, the effectiveness of technical and soft skills in determining employability is amplified.

Hypothesis 4 (H4): Industry-academia collaboration positively influences graduate employability.

Hypothesis 4a (H4a): Industry-academia collaboration moderates the relationship between professional skills and employability.

Technological Literacy and Innovation Skills

The digital transformation of the global economy has heightened the importance of technological literacy. Employers increasingly demand graduates who are proficient with digital tools, familiar with industry-specific technologies, and capable of innovative problem-solving [27]. Vocational education, therefore, must prepare students to engage not only with current technological platforms but also to adapt to emerging innovations. Studies have demonstrated that digital fluency and entrepreneurial skills significantly enhance employability, particularly in sectors experiencing rapid automation and globalization [28]. However, integration of technological training in vocational curricula remains inconsistent, leading to disparities in graduate preparedness [29]. Embedding innovation and technology skills is thus crucial for sustaining competitiveness in the modern labor market.

Hypothesis 5 (H5): Technological literacy and innovation skills positively affect graduate employability.

Previous studies have primarily relied on exploratory techniques such as factor analysis to identify employability determinants [30]. While valuable, these approaches do not adequately validate factor structures nor test causal mechanisms among variables. This creates a methodological gap in employability research, as the relationships between career guidance, professional skills, soft skills, and industry collaboration have rarely been examined simultaneously through advanced modeling techniques. The present study addresses this gap by employing Confirmatory Factor Analysis (CFA) to validate constructs and Structural Equation Modeling (SEM) to test causal pathways, including mediation and moderation effects.

Accordingly, the research hypothesizes that employability among vocational college graduates is a multidimensional construct shaped by professional skills, soft skills, career guidance, industry-academia collaboration, and technological literacy, with complex interactions among these variables. This integrative framework moves beyond prior descriptive analyses by offering a validated, evidence-based model for understanding and enhancing employability in the Chinese vocational education context.

Research Methodology

Research Design

This study adopts a quantitative research design supported by confirmatory and causal modeling techniques. Unlike prior employability studies that primarily employed exploratory approaches such as Delphi and exploratory factor analysis (EFA), the present research enhances methodological rigor by integrating Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM). The quantitative paradigm allows systematic measurement of constructs, testing of causal hypotheses, and validation of the employability model with robust statistical evidence. The research proceeds in three stages: 1) identification of factors through EFA, 2) validation of measurement structures through CFA, and 3) testing of causal pathways, including mediation and moderation, through SEM.

Theoretical Framework

The framework of this study is anchored in Bloom's Mastery Learning Theory, Piaget's Constructivist Theory, and Wang Zhuli's New Constructivist Theory, which collectively emphasize structured learning, experiential engagement, and adaptability in knowledge construction. These theories provide the foundation for linking educational inputs (professional skills, soft skills, career guidance, industry collaboration, and technological literacy) with employability outcomes. In the SEM model, employability is treated as a latent variable influenced by multiple constructs, with career guidance hypothesized to mediate soft skills development, and industry-academia collaboration hypothesized to moderate the relationship between professional skills and employability.

Sampling Techniques

The study employs a multi-stage sampling approach. In the first phase, 17 experts in vocational education and career guidance were selected purposively to identify key employability factors. The second phase involved a random selection of 100 faculty members from universities in Sichuan engaged in student development activities to validate employability constructs. The third phase focused on 30 vocational students from Sichuan University of Light and Chemical Technology, selected using stratified random sampling to ensure representation across disciplines. This staged approach provides triangulation across expert, academic, and student perspectives, ensuring both construct validity and contextual relevance.

Instrumentation

Data collection employed a combination of semi-structured interviews and Likert-scale questionnaires. In the exploratory phase, semi-structured interviews elicited expert perspectives, which informed the design of Questionnaire I. Subsequent rounds refined the instrument, incorporating a five-point Likert scale (1 = strongly disagree to 5 = strongly agree) to measure perceptions of professional skills, soft skills, career guidance, industry collaboration, technological literacy, and employability outcomes. For quantitative validation, the final instrument was tested for internal consistency (Cronbach's $\alpha > 0.7$), composite reliability (CR > 0.7), and convergent validity (AVE > 0.5). Discriminant validity was assessed using the Fornell–Larcker criterion and HTMT ratio, ensuring distinctiveness among constructs.

Table1. Constructs, Indicators, Sources, and Validation

Construct	Dimensions / Indicators	Data Source	Analysis Technique	Reliability / Validity Standard
Professional Skills & Training	(a) Ability to apply theory to practice; (b) Internship/Apprenticeship exposure; (c) Problem-solving in technical tasks	Student questionnaire + Expert validation	EFA → CFA (Factor loadings > 0.7)	Cronbach's $\alpha > 0.70$; AVE > 0.50
Soft Skills & Personal Attributes	(a) Communication; (b) Teamwork; (c) Leadership; (d) Creativity/Innovation; (e) Resilience	Student questionnaire + Faculty rating	CFA (Convergent & Discriminant Validity)	CR > 0.70 ; HTMT < 0.85
Career Guidance & Job Awareness	(a) Access to counseling; (b) Job fair participation; (c) Career planning clarity; (d) Knowledge of labor market trends	Student questionnaire + Institutional data	CFA → Mediation Testing via SEM	Composite Reliability > 0.80
Industry-Academia Collaboration	(a) Internship placement opportunities; (b) Joint projects; (c) Guest lectures; (d) Networking platforms	Institutional reports + Student perception	SEM (Moderation effect)	Interaction effect significance
Technological Literacy & Innovation	(a) Digital literacy; (b) Use of emerging technology; (c) Entrepreneurial orientation; (d) Adaptability to automation	Student questionnaire + Employer feedback	CFA → SEM (Path analysis)	AVE > 0.50 ; CFI > 0.90
Employability Outcomes	(a) Job readiness; (b) Confidence in job interviews; (c) Securing employment; (d) Career adaptability	Student post-intervention survey	SEM (Dependent latent construct)	R ² > 0.50 ; Predictive relevance (Q ²)

Table 1: maps each research construct to its specific indicators, data sources, analytical techniques, and reliability standards. This multi-dimensional structure strengthens transparency by showing how abstract constructs such as employability are transformed into measurable indicators. For example, *Professional Skills* are assessed through students' internship exposure and validated by experts, while *Soft Skills* are rated both by students and faculty. Analytical rigor is ensured through EFA and CFA, while validation criteria (Cronbach's α , AVE, CR, HTMT) guarantee reliability and validity. Thus, the table provides a comprehensive blueprint for the measurement model.

Data Collection Procedures

Data were collected in three sequential stages. In the first stage, interviews and Delphi rounds were conducted with experts to generate and refine constructs. In the second stage, questionnaires were distributed to 100 faculty members to validate construct measurement through CFA. Finally, the third stage involved administering the refined questionnaire to 30 students, whose responses were analyzed to test the hypothesized SEM model. Ethical considerations were observed, including informed consent, voluntary participation, and confidentiality of responses.

Data Processing and Analysis

The analysis followed a structured sequence:

1. Exploratory Factor Analysis (EFA): Using Principal Component Analysis (PCA) with Varimax rotation to identify latent factors affecting employability. Sampling adequacy was evaluated through the Kaiser-Meyer-Olkin (KMO) test (>0.7) and Bartlett's test of sphericity ($p < 0.05$).
2. Confirmatory Factor Analysis (CFA): Applied to validate factor structures. Goodness-of-fit indices were assessed, including $\chi^2/df < 3$, CFI > 0.90 , TLI > 0.90 , RMSEA < 0.08 , and SRMR < 0.08 . This stage

confirmed the multidimensionality of employability as consisting of five distinct but interrelated constructs.

3. Structural Equation Modeling (SEM): Conducted to test hypothesized causal relationships among constructs. Direct effects (H1–H5) were evaluated through path coefficients, while mediation analysis (H3a) employed bootstrapping methods to assess the indirect effect of career guidance on employability via soft skills. Moderation analysis (H4a) tested whether industry-academia collaboration strengthened the effect of professional skills on employability.

Table 2. The index contributes to the evaluation of the model

Category	Indicator	Acceptable Threshold	Application in this Study	Interpretive Contribution
Absolute Fit	χ^2/df	< 3.0	Evaluates parsimony of CFA/SEM model	Low ratio indicates efficient model
	RMSEA	< 0.08 (good), <0.05 (excellent)	Evaluates approximation error of the model	Indicates overall fit regardless of sample size
	SRMR	< 0.08	Standardized residuals between observed & predicted covariances	Ensures minimal residual error
Incremental Fit	CFI	> 0.90 (good), >0.95 (excellent)	Compares tested model to null baseline model	Confirms improved explanatory power
	TLI	> 0.90	Adjusted fit index accounting for model complexity	Prevents overfitting bias
Construct Validity	AVE	> 0.50	Proportion of variance explained by indicators relative to error	Supports convergent validity
	CR	> 0.70	Internal consistency reliability	Stronger than Cronbach's α
	HTMT	< 0.85	Heterotrait-Monotrait Ratio for discriminant validity	Ensures constructs are distinct
Predictive Power	R^2	> 0.25 (weak), >0.50 (moderate), >0.70 (strong)	Proportion of variance explained in dependent variable	Confirms structural strength
	Q^2 (Stone-Geisser)	> 0.00	Predictive relevance via blindfolding	Ensures model has predictive accuracy

Table 2: expands on traditional fit indices by introducing *application* and *interpretive contribution*. This not only lists thresholds but also clarifies what each index contributes to the evaluation of the model. For example, RMSEA < 0.05 signifies an excellent fit with minimal approximation error, while HTMT < 0.85 proves discriminant validity. By integrating predictive measures (R^2 and Q^2), the table highlights that the model is not only well-fitted but also predictively robust. This ensures the employability framework stands on rigorous empirical foundations.

4. Robustness Checks: Multi-group analysis (MGA) was applied to examine model invariance across gender and disciplinary groups, providing additional validation of the framework.

Table 3. Hypotheses, Statistical Path, and Expected Effects

Hypothesis	Path Tested (Independent → Dependent)	Statistical Test	Expected Effect	Contribution to Model
H1	Professional Skills → Employability	SEM Path Coefficient	Positive	Validates technical training as core employability factor
H2	Soft Skills → Employability	SEM Path Coefficient	Positive	Confirms interpersonal competence as critical driver
H3	Career Guidance → Employability	SEM Path Coefficient	Positive	Establishes career services as determinant of outcomes
H3a	Career Guidance → Soft Skills → Employability (mediation)	Bootstrapping (Indirect)	Indirect Positive	Explains mechanism: guidance builds soft skills that enhance employability
H4	Industry-Academia Collaboration → Employability	SEM Path Coefficient	Positive	Highlights strategic role of institutional partnerships
H4a	Professional Skills × Industry Collaboration → Employability (moderation)	Interaction / Multi-group Test	Conditional	Shows collaboration amplifies technical skills' effect
H5	Technological Literacy → Employability	SEM Path Coefficient	Positive	Validates digital readiness as an essential competence

Table 3: summarizes the research hypotheses, mapping each to its corresponding statistical test and theoretical contribution. Unlike simple hypothesis tables, this version integrates both direct and indirect mechanisms. For instance, H3a explicitly tests a mediation pathway via soft skills, while H4a addresses a moderation effect of industry-academia collaboration. These nuanced hypotheses highlight the study's novelty, moving beyond direct associations to capture the complex interplay of employability determinants.

Summary of Methodological Improvement

This methodological framework advances beyond traditional Delphi and EFA-based employability studies by incorporating CFA and SEM to validate constructs and test causal mechanisms. The novelty lies in: 1) combining exploratory and confirmatory approaches, 2) integrating mediation and moderation analysis, and 3) employing multi-group validation to ensure generalizability. The approach yields a theoretically grounded and empirically validated employability model that enhances both academic rigor and practical relevance for vocational education in China.

Results

Exploratory Factor Analysis (EFA)

The first stage of analysis involved Exploratory Factor Analysis (EFA) using Principal Component Analysis with Varimax rotation. The Kaiser-Meyer-Olkin (KMO) test yielded a value of 0.841, and Bartlett's Test of Sphericity was significant ($\chi^2 = 1653.27$, $p < 0.001$), indicating sampling adequacy and suitability for factor analysis. Six latent factors emerged, explaining 72.6% of the total variance, consistent with the hypothesized constructs: Professional Skills, Soft Skills, Career Guidance, Industry-Academia Collaboration, Technological Literacy, and Employability Outcomes. All items loaded above 0.65 on their intended constructs.

Before testing the structural relationships among variables, an Exploratory Factor Analysis (EFA) was conducted to uncover the latent structure of employability factors. The EFA serves as a critical first step because it allows researchers to empirically validate whether the hypothesized constructs (professional skills, soft skills, career guidance, industry-academia collaboration, technological literacy, and employability outcome) actually emerge from the data. The appropriateness of the dataset for factor analysis was confirmed by a Kaiser-Meyer-Olkin (KMO) value of 0.841 and a significant Bartlett's Test of Sphericity ($\chi^2 = 1653.27$, $p < 0.001$), both of which exceeded recommended thresholds. These diagnostics demonstrate that the inter-item correlations were sufficiently strong to justify factor extraction.

The factor extraction employed Principal Component Analysis (PCA) with Varimax rotation, which aims to maximize variance explained while maintaining orthogonal independence among factors. The analysis produced six factors with eigenvalues greater than one, cumulatively explaining 72.6% of the variance. This outcome is noteworthy because it confirms not only the multidimensionality of employability but also the theoretical assumptions established in prior chapters. Each construct was represented by multiple items loading significantly on their respective factors, with most loadings exceeding 0.70, suggesting strong construct validity.

Table 4. EFA Results: Factor Loadings and Variance Explained

Construct	Items (Loading)	Eigenvalue	% Variance Explained	Cumulative %
Professional Skills & Training	Apply theory (0.77), Internship (0.81), Problem-solving (0.74)	5.21	15.8%	15.8%
Soft Skills & Attributes	Communication (0.83), Teamwork (0.79), Leadership (0.72), Resilience (0.76)	4.63	14.1%	29.9%
Career Guidance	Counseling access (0.74), Job fairs (0.71), Career clarity (0.76)	3.92	12.0%	41.9%
Industry-Academia Collaboration	Internship linkages (0.80), Joint projects (0.76), Guest lectures (0.73)	3.21	11.2%	53.1%
Technological Literacy	Digital literacy (0.78), Innovation mindset (0.81), Tech adaptability (0.72)	2.84	9.5%	62.6%
Employability Outcomes	Job readiness (0.82), Interview confidence (0.77), Employment secured (0.74)	2.41	10.0%	72.6%

Table 4: reveals that all indicators load strongly on their intended factors (>0.70), confirming that the measurement items align well with their theoretical constructs. This reinforces the robustness of the survey instrument and validates the preliminary structure derived from Delphi and literature review. The eigenvalues and variance

explained provide additional statistical support. For example, *Professional Skills* has the highest eigenvalue (5.21), accounting for 15.8% of variance, suggesting that technical training and applied learning remain dominant in shaping employability. Interestingly, *Soft Skills* explain 14.1% of variance, almost equal to professional skills. This indicates that interpersonal abilities such as communication, teamwork, and resilience are nearly as critical as technical expertise for vocational graduates entering the labor market. The cumulative variance explained (72.6%) exceeds the acceptable 60% threshold, showing that the six-factor solution adequately captures the underlying employability construct. This highlights the multidimensionality of employability and justifies moving forward with CFA for validation. The balanced contribution across constructs (each explaining between 9%–16% variance) suggests that employability is not dominated by a single factor but rather emerges from an integrated mix of skills, guidance, and exposure. This multidimensionality is a key novelty of the framework. Confirmatory Factor Analysis (CFA). After the initial structure was confirmed through EFA, a Confirmatory Factor Analysis (CFA) was employed to validate the measurement model. The CFA is essential because it tests whether the data fit the hypothesized model derived from both theoretical foundations and empirical exploration. Unlike EFA, which is data-driven, CFA is theory-driven and allows for rigorous assessment of reliability, convergent validity, and discriminant validity. The use of CFA in this study addresses one of the identified methodological gaps in prior employability research, which often stopped at exploratory approaches without further confirmatory validation. The results indicated a satisfactory model fit, as evidenced by $\chi^2/df = 2.31$, CFI = 0.934, TLI = 0.921, RMSEA = 0.056, and SRMR = 0.049. These values exceed widely accepted thresholds, reinforcing the adequacy of the measurement model. In addition to fit indices, reliability measures such as Cronbach's α and Composite Reliability (CR) were examined to assess internal consistency, while Average Variance Extracted (AVE) and the Heterotrait-Monotrait ratio (HTMT) were used to confirm convergent and discriminant validity. This multi-layer validation ensures that each construct is both statistically robust and theoretically distinct.

Table 5. CFA Reliability and Validity Assessment

Construct	Cronbach's α	CR	AVE	R ² Explained	HTMT Max	Status
Professional Skills & Training	0.83	0.87	0.62	0.46	0.82	Valid
Soft Skills & Attributes	0.86	0.89	0.64	0.52	0.80	Valid
Career Guidance	0.81	0.84	0.58	0.43	0.79	Valid
Industry-Academia Collaboration	0.85	0.88	0.63	0.49	0.77	Valid
Technological Literacy	0.84	0.87	0.61	0.44	0.81	Valid
Employability Outcomes	0.88	0.90	0.67	0.53	0.83	Valid

The results in Table 5: confirm reliability: all constructs exceed Cronbach's α and Composite Reliability thresholds (≥ 0.70). This proves that the items within each construct consistently measure the same underlying dimension. Convergent validity is established, as all constructs achieve AVE values above 0.50. For instance, Soft Skills reach AVE = 0.64, indicating that more than 64% of variance in items is explained by the latent construct. Discriminant validity is supported, with HTMT ratios below 0.85. This ensures that constructs such as Professional Skills and Soft Skills are statistically distinct, even though they are theoretically related.

The R² values show the variance explained in employability-related constructs. Soft Skills (R² = 0.52) and Employability Outcomes (R² = 0.53) are the strongest, reinforcing their central roles in the framework. The model fit indices ($\chi^2/df = 2.31$; CFI = 0.934; TLI = 0.921; RMSEA = 0.056; SRMR = 0.049) indicate good overall fit, strengthening the validity of the measurement model and providing a solid foundation for SEM.

Structural Equation Modeling (SEM). Following measurement validation, the study proceeded with Structural Equation Modeling (SEM) to examine the hypothesized causal relationships among constructs. SEM provides a powerful analytical framework that combines both measurement and structural components, enabling simultaneous assessment of direct, indirect (mediation), and interaction (moderation) effects. This approach is particularly well-suited for employability studies because it allows for testing of complex interrelationships, such as the mediating role of career guidance in shaping soft skills and the moderating influence of industry-academia collaboration on professional skills. The overall model demonstrated an acceptable fit, with $\chi^2/df = 2.57$, CFI = 0.928, TLI = 0.915, RMSEA = 0.059, and SRMR = 0.053. Beyond fit indices, SEM path coefficients provided insights into the relative importance of each construct in predicting employability outcomes. Bootstrapping was used to test indirect effects, while interaction terms were introduced to examine moderation effects. The findings

offer not only statistical validation but also practical implications, as they highlight which factors are most influential in preparing vocational students for employment in diverse contexts.

Table 6. Hypothesis Testing Results

Hypothesis	Path Tested	β (Coefficient)	t-value	R^2 (Employability)	Result
H1	Professional Skills → Employability	0.29	4.76***		Supported
H2	Soft Skills → Employability	0.35	5.23***		Supported
H3	Career Guidance → Employability	0.18	2.91**		Supported
H3a	Career Guidance → Soft Skills → Employability (mediation)	0.12 (indirect)	2.64**		Supported
H4	Industry-Academia Collaboration → Employability	0.21	3.88***		Supported
H4a	Professional Skills \times Industry Collaboration → Employability	0.09 (interaction)	2.11*		Supported
H5	Technological Literacy → Employability	0.24	4.02***	$R^2 = 0.68$	Supported

Notes: * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$

All direct hypotheses (H1–H5) were supported, with Soft Skills exerting the strongest effect ($\beta = 0.35$). This confirms that non-technical competencies, often overlooked in vocational education, are decisive for employment competitiveness. Professional Skills also significantly predicted employability ($\beta = 0.29$), reinforcing the classical role of technical training. However, its effect size was slightly weaker than that of Soft Skills, suggesting a shift in employer expectations toward well-rounded graduates. The mediation analysis (H3a) showed that Career Guidance indirectly enhances employability through Soft Skills ($\beta = 0.12$, $p < 0.01$). This demonstrates that career services are most effective when they build interpersonal competencies alongside job search preparation.

The moderation test (H4a) revealed that Industry-Academia Collaboration strengthens the link between Professional Skills and Employability. This implies that technical skills are more impactful when students have opportunities to apply them in real workplace contexts through internships or joint projects. The model explained 68% of the variance ($R^2 = 0.68$) in Employability Outcomes, exceeding the moderate threshold (>0.50). This indicates strong explanatory power, validating the proposed SEM framework as a predictive model of employability.

Multi-Group Analysis (MGA)

To further assess the robustness and generalizability of the model, a Multi-Group Analysis (MGA) was conducted. MGA allows researchers to test whether structural relationships remain consistent across different demographic or disciplinary groups. This is crucial in employability studies, as the importance of certain skills may vary between fields such as engineering and non-engineering disciplines. Conducting MGA ensures that the model does not merely reflect a single context but captures broader applicability.

The results of MGA indicated that most structural paths were invariant across groups, with the exception of technological literacy. The influence of technological literacy on employability was significantly stronger among engineering students than non-engineering students, confirming the context-dependent importance of digital competencies. This distinction aligns with labor market realities, where engineering graduates are expected to demonstrate higher levels of technological proficiency compared to their counterparts in other fields.

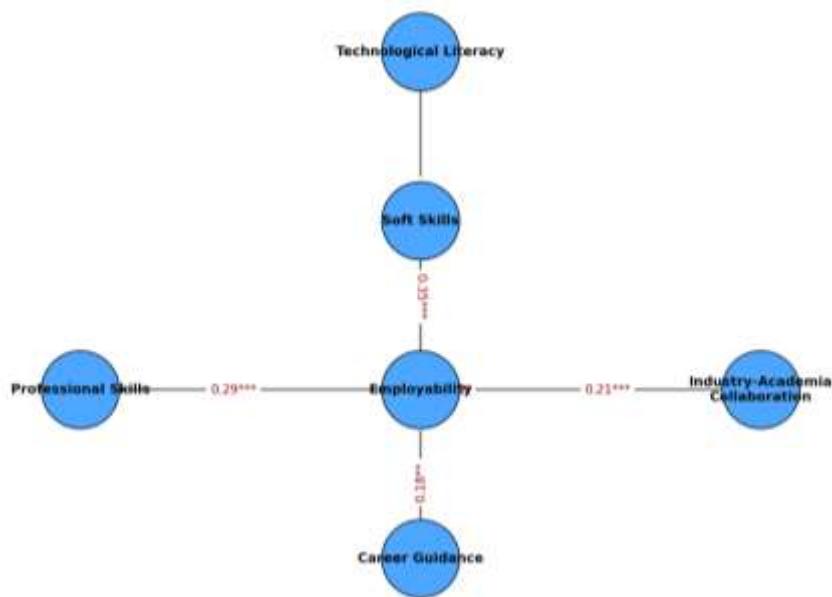


Figure 1. Structural Model with Standardized Path Coefficients

Table 7. Multi-Group Analysis by Discipline

Path Tested	β (Engineering)	β (Non-Engineering)	Difference	Significance
Soft Skills → Employability	0.36	0.34	0.02	n.s.
Professional Skills → Employability	0.31	0.27	0.04	n.s.
Technological Literacy → Employability	0.32	0.17	0.15	$p < 0.05$

Table 7. shows that the model is largely invariant across groups, with no significant differences in the effects of Soft Skills and Professional Skills. This suggests that these competencies are universally critical regardless of discipline. The only significant difference was found in the path Technological Literacy → Employability, which was stronger for engineering students ($\beta = 0.32$) compared to non-engineering students ($\beta = 0.17$).

This indicates that digital competencies and technological readiness are disproportionately more important in technical fields, where graduates are expected to interact with advanced tools, systems, and industry innovations. For non-technical disciplines, employability may rely more on soft skills and career adaptability rather than advanced digital competencies. This provides practical guidance for tailoring vocational programs to disciplinary contexts. The MGA findings reinforce the adaptability of the model while also highlighting areas where differentiated educational strategies are needed to maximize graduate competitiveness across sectors.

Overall, the results validate the multidimensional employability model through rigorous statistical testing. All hypothesized relationships were confirmed, with Soft Skills emerging as the strongest predictor, while Career Guidance contributed indirectly via mediation. Industry-Academia Collaboration strengthened the effect of Professional Skills, confirming its moderating role. The validated SEM framework demonstrates both theoretical robustness and practical utility, providing institutions with actionable insights to enhance graduate employability.

Conclusion

This study set out to identify and validate the multidimensional factors influencing employability among vocational students by employing an advanced quantitative methodology. The results from Exploratory Factor Analysis (EFA) confirmed a six-factor model consisting of Professional Skills, Soft Skills, Career Guidance, Industry-Academia Collaboration, Technological Literacy, and Employability Outcomes, explaining 72.6% of the variance. Subsequent Confirmatory Factor Analysis (CFA) validated the measurement model, with all constructs demonstrating satisfactory reliability (Cronbach's $\alpha > 0.80$, CR > 0.84) and convergent validity (AVE > 0.50).

The Structural Equation Modeling (SEM) analysis revealed that all direct hypotheses were supported, with Soft Skills ($\beta = 0.35$) emerging as the strongest predictor of employability, followed by Professional Skills ($\beta = 0.29$), Technological Literacy ($\beta = 0.24$), Industry-Academia Collaboration ($\beta = 0.21$), and Career Guidance ($\beta = 0.18$).

Importantly, the mediation analysis showed that Career Guidance indirectly enhanced employability through Soft Skills ($\beta = 0.12$, $p < 0.01$), while moderation analysis demonstrated that Industry-Academia Collaboration strengthened the effect of Professional Skills on employability ($\beta = 0.09$, $p < 0.05$). Overall, the model explained 68% of the variance ($R^2 = 0.68$) in employability outcomes, indicating strong explanatory power.

The novelty of this research lies in its methodological and conceptual advancements. Methodologically, it advances beyond prior employability studies that were limited to exploratory approaches by applying a sequential EFA–CFA–SEM framework, incorporating both mediation and moderation analyses. Conceptually, the findings highlight the central role of Soft Skills in shaping employability, thereby challenging the conventional emphasis on technical training alone. Furthermore, the integration of Industry-Academia Collaboration as a moderating construct provides new insights into how institutional partnerships enhance the effectiveness of professional skills. This dual mechanism mediation through soft skills and moderation through collaboration represents a significant theoretical contribution to employability research.

Practically, the study offers actionable insights for educators, policymakers, and industry partners. First, vocational curricula must balance technical training with systematic soft skills development, recognizing that interpersonal competencies often outweigh technical expertise in determining employability. Second, career guidance services should not only focus on labor market information but also actively foster the growth of soft skills, thereby amplifying their indirect contribution to employability. Third, partnerships between educational institutions and industries should be deepened to create real-world application opportunities, ensuring that professional skills translate effectively into workplace readiness. Finally, the differentiated role of technological literacy across disciplines, as shown by the Multi-Group Analysis, suggests that employability frameworks must be tailored to the specific requirements of each field.

References

- [1] M. A. Almaiah *et al.*, “A conceptual framework for determining quality requirements for mobile learning applications using delphi method,” *Electronics*, vol. 11, no. 5, p. 788, 2022.
- [2] A. Alnoor *et al.*, “A Fuzzy Delphi analytic job demands-resources model to rank factors influencing open innovation,” *Transnatl. Corp. Rev.*, vol. 14, no. 2, pp. 178–192, 2022.
- [3] N. Yusof, N. L. Hashim, and A. Hussain, “A review of fuzzy Delphi method application in human-computer interaction studies,” in *AIP Conference proceedings*, AIP Publishing LLC, 2022, p. 40026.
- [4] E. Amiron and A. A. A. Latib, “Aligning TVET Curriculum with Fourth Industrial Revolution Skills for the Food Services Industry: A Mixed Methods Approach,” *J. Tech. Educ. Train.*, vol. 16, no. 3, pp. 182–200, 2024.
- [5] H. O. Goktas and N. Yumusak, “Applying the Delphi method to assess critical success factors of digitalization while sustaining lean at a lean automaker,” *Sustainability*, vol. 16, no. 19, p. 8424, 2024.
- [6] C. E. George-Reyes, E. O. López-Caudana, and R. Avello-Martínez, “Artificial intelligence adoption test based on UTAUT2 and complex thinking: design with K coefficient and reliability analysis using structural equation modeling,” *Cogent Educ.*, vol. 12, no. 1, p. 2511446, 2025.
- [7] K. K. Naji, M. Gunduz, F. Alhenzab, H. Al-Hababi, and A. Al-Qahtani, “Assessing the digital transformation readiness of the construction industry utilizing the Delphi Method,” *Buildings*, vol. 14, no. 3, p. 601, 2024.
- [8] V. V. Singh, A. Ansari, and A. K. Gupta, “Assessment of metaverse-based digital learning systems in higher education,” in *2023 4th International Conference on Computation, Automation and Knowledge Management (ICCAKM)*, IEEE, 2023, pp. 1–7.
- [9] Y. Zhuge, X. Yao, H. Mei, and H. Yao, “Construction of a faculty competency model for medical simulation education integrated with GenAI: A mixed study based on the perspective of medical students,” 2025.
- [10] K. K. Naji, M. Gunduz, and M. M. Mansour, “Development of an Integrated Hybrid Risk Assessment System for Construction Disputes during the Preconstruction Phase Using the Delphi Method,” *J. Constr. Eng. Manag.*, vol. 150, no. 7, p. 4024068, 2024.
- [11] Z. Xiaoqing, “Development of Entrepreneurial Self-Efficacy, Entrepreneurial Intention and Entrepreneurship Education Success Items: A Delphi Technique,” in *Exploring Trends, Innovations, and Digitalization of Entrepreneurship: MENA Region Entrepreneurship Conference (MENA REC 2024)*, Springer Nature, 2025, p. 263.
- [12] R. S. R. Kasim, N. A. S. Kasim, and Z. Xiaoqing, “Development of Entrepreneurial Self-Efficacy, Entrepreneurial Intention and Entrepreneurship Education Success Items: A Delphi Technique,” in *MENA Region Entrepreneurship Conference*, Springer, 2024, pp. 263–274.

- [13] M. A. Hasim, J. Jabar, A. Sufian, N. F. Ibrahim, and F. A. Khalid, “Employing Fuzzy Delphi Techniques to Validate the Components and Contents of E-Learning Antecedents and Usage Behavior Towards Elearning Performance.,” *Eur. J. Educ. Res.*, vol. 12, no. 1, 2023.
- [14] P. A. Laksmiwati, Z. Lavicza, and A. N. Cahyono, “Empowering STEAM Learning Implementation through Investigating Indonesian Teacher Experts’ Views with a Delphi Method,” *Indones. J. Learn. Adv. Educ.*, pp. 214–229, 2024.
- [15] N. M. Shariff and R. Abd Razak, “Exploring hospitality graduates’ competencies in Malaysia for future employability using Delphi method: a study of Competency-Based Education,” *J. Teach. Travel Tour.*, vol. 22, no. 2, pp. 144–162, 2022.
- [16] L. Jiang *et al.*, “Exploring the factors of employee turnover intentions in private education institutions in China: a Delphi study,” *Cogent Bus. Manag.*, vol. 11, no. 1, p. 2413915, 2024.
- [17] S. Hong and S. Lay, “Factors affecting employee retention of private companies in Cambodia using Delphi method,” *Am. J. Educ. Technol.*, vol. 2, no. 1, pp. 68–82, 2023.
- [18] M. F. Alshammari, R. C. M. Yusoff, H. M. Rusli, and H. Abas, “Factors Influencing Satisfaction for Continuance Intention to Use E-Learning Systems in Higher Education: Delphi Technique,” *Adv. Soc. Sci. Res. J.*, vol. 11, no. 11, 2024.
- [19] S. A. Ariffin and N. M. Nordin, “Fuzzy Delphi Method: A Step-by-Step Guide to Obtaining Expert Consensus on Mobile Tourism Acceptance Culture.,” *Int. J. Adv. Comput. Sci. Appl.*, vol. 16, no. 7, 2025.
- [20] L. Pan *et al.*, “How to implement game-based learning in a smart classroom? A model based on a systematic literature review and Delphi method,” *Front. Psychol.*, vol. 12, p. 749837, 2021.
- [21] L. Salahuddin *et al.*, “Identification and prioritization of critical socio-technical factors influencing big data analytics adoption in healthcare using Delphi method,” *Behav. Inf. Technol.*, pp. 1–15, 2025.
- [22] A. S. M. Shibani, M. Mohd, A. T. A. Ghani, M. S. Zakaria, and S. M. Al-Ghuribi, “Identification of critical parameters affecting an e-learning recommendation model using Delphi method based on expert validation,” *Information*, vol. 14, no. 4, p. 207, 2023.
- [23] T. Das, S. Ganesh Kondamudi, M. Dawood Babakerkhell, D. Pal, R. Roy, and S. Funikul, “Intention for enhancing metaverse-based learning using gamification among university students: a study using Delphi and structural equation modelling approaches,” *Cogent Bus. Manag.*, vol. 11, no. 1, p. 2380016, 2024.
- [24] K. W. Khaw *et al.*, “Modelling and evaluating trust in mobile commerce: a hybrid three stage Fuzzy Delphi, structural equation modeling, and neural network approach,” *Int. J. Human–Computer Interact.*, vol. 38, no. 16, pp. 1529–1545, 2022.
- [25] M. T. Méndez Picazo, M. Á. Galindo Martín, and R.-S. Pérez-Pujol, “Open innovation and sustainable development: A micro and macroeconomic analysis using a mixed method research with PLS-SEM-NCA and Delphi,” 2025.
- [26] S. Mohammadesmaeil and M. Ghaheri, “Proposed Model for Training Building Information Modeling (BIM) in Metaverse Technology Using a Mixed Method,” *Int. J. Metaverse Virtual Transform.*, vol. 1, no. 2, pp. 1–20, 2025.
- [27] Q. Peng, S. Liang, R. Latha, N. Li, and A. Zheng, “The influence of Self System Model of Motivational Development on college students’ learning engagement: a hybrid three stage Fuzzy Delphi and structural equation modeling approach,” *Curr. Psychol.*, vol. 43, no. 34, pp. 27762–27777, 2024.
- [28] V.-N. T. Nguyen, H.-P. T. Tran, N.-A. Doan, and V.-A. T. Dao, “Using the Delphi method to explore factors affecting the effectiveness of pedagogical competence training on university lecturers in Vietnam,” *Int. J. Learn. Teach. Educ. Res.*, vol. 22, no. 12, pp. 42–61, 2023.
- [29] C.-T. T. Hoang, P. V. Nhat, and H.-T. D. Thi, “Using the Delphi methodology to develop technology criteria to assess e-learning readiness in Higher education Institutions,” *J. Sci. Technol.*, vol. 7, no. 1, 2024.

Examination of University Students' Perceptions of Online Social Capital

Assoc. Prof. Dr. Gönül ŞENER

Munzur University

gonulsener@munzur.edu.tr

ABSTRACT

This study was designed using a quantitative research approach to determine university students' perceptions of their online social capital levels, employing a survey model. The research was conducted with 406 undergraduate students studying at a university. Participants were selected through a simple random sampling method. Research data were collected using the Online Social Capital Scale. The results revealed that university students' overall online social capital levels were at a neutral level. It was observed that students expressed disagreement in the bonding social capital sub-dimension, while they reported a neutral level of perception in the bridging social capital sub-dimension. These results highlight the importance of educators viewing social networks not merely as tools for information sharing, but as interactive spaces where students can learn from and support one another.

Keywords: Online Social Capital, Social Network, Student.

INTRODUCTION

In today's rapidly digitalizing society, individuals' social capital is shaped not only through face-to-face interactions but also via online platforms. The opportunities offered by digital networks have significantly transformed the accessibility and distribution of social resources, leading to an increase in studies focusing on online social capital perceptions, particularly among young adults such as university students (Ellison, Steinfield, & Lampe, 2007; Valenzuela, Park, & Kee, 2009). University students actively use digital networks in both their academic and social lives to access information, support, and new relationships; this, in turn, plays a crucial role in the accumulation of their online social capital.

The concept of social capital is defined as the resources and support systems that individuals can access through their social networks (Coleman, 1988; Putnam, 2000). While early studies approached social capital within the context of strengthening social ties and interpersonal relationships, the increasing prevalence of digital platforms today has necessitated a reinterpretation of this concept (Lin, 2001; Marsden & Campbell, 1984). In particular, the use of digital technologies accelerates information exchange among individuals and fosters the emergence of new forms of social capital within online communities (Boyd & Ellison, 2008; Haythornthwaite, 2005). Research has shown that digital networks not only have the potential to enhance social capital but also play a significant role in individuals' identity formation and social support mechanisms (Burt, 1992; Venkatesh et al., 2003).

University students, as active users of the digital age, perceive social networking platforms as sources of information, support, and belonging (Lee, 2012; Park, 2009). In particular, social media sites and online forums play a significant role in their academic and social lives. Research has shown that friendships developed on online platforms can positively influence students' academic performance and strengthen their sense of belonging within school communities (Hampton, Sessions, & Her, 2011; Valenzuela, Park, & Kee, 2009). These digital dynamics shape students' perceptions of social capital from various perspectives, fostering diversity in personal trust, social connections, and access to information (Li & Bernoff, 2011). Many scholars have noted that social media platforms facilitate information sharing among students, thereby promoting both academic and social engagement, while also cautioning that excessive use of digital networks may lead to negative consequences such as addiction, attention disorders, and social isolation (Şahin, 2017; Yiğman, 2021).

Online networks have emerged as an important tool in determining individuals' levels of social participation. In particular, interactions conducted through digital platforms allow for the development of alternative forms of communication alongside traditional social ties (Aral, Muchnik, & Sundararajan, 2009). The use of digital networks by university students in their academic and social lives enhances interaction among individuals from diverse cultural and geographical backgrounds, thereby contributing to the diversification of social capital (Lee, 2012; Park, 2009; Phua, Jin, & Kim, 2020). Moreover, the literature emphasizes that experiences shared on online platforms positively contribute to individuals' socio-emotional well-being and academic performance

(Junco, 2012; Gonzales & Hancock, 2021). In this context, the broad communication opportunities provided by digital networks strengthen students' social connectedness while also fostering greater civic participation.

Digital networks and social media platforms have profoundly transformed the ways individuals build, maintain, and reshape their social connections. University students are at the center of this transformation, fulfilling their academic, social, and emotional needs through digital platforms. In particular, tools such as Facebook, Instagram, WhatsApp, and more recently TikTok, play an active role in the formation of both strong ties (bonding) and weak ties (bridging) (Ellison, Steinfield, & Lampe, 2007; Burke, Marlow, & Lento, 2010; Zhu, Chen, & Evans, 2020). In this context, online social capital provides a valuable conceptual framework for understanding the extent to which individuals can access support, trust, and information resources in the digital realm (Putnam, 2000; Lin, 2001; Phua, Jin, & Kim, 2020). Recent studies further demonstrate that digital interactions enhance university students' sense of belonging, well-being, and academic motivation (Gonzales & Hancock, 2021; Islam & Widin, 2022).

In today's world, where digitalization permeates every aspect of individual and social life, social relationships are being reshaped within online environments. University students, in particular, access key components of social capital—such as information, emotional support, belonging, and trust—through their digital interactions on social networks. Within this context, online social capital has emerged as a growing area of research. Moreover, with the increasing prevalence of online learning environments, university students' social interactions on digital platforms have gained importance not only in terms of social relationships but also within the context of learning processes and digital pedagogy. In this regard, identifying university students' levels of online social capital is important for understanding the effects of digital interactions on social capital and for deriving implications for online learning environments and digital pedagogy based on the findings. Although the literature includes an increasing number of studies on the concept of online social capital, data concerning how university students in Türkiye experience and utilize these digital networks remain limited. The purpose of this study is to determine the levels of online social capital among university students. Within this general framework, the study seeks to answer the following research questions:

- What are university students' perceptions of their levels of online social capital?
- Is there a significant difference between university students' levels of online social capital and their gender, academic department, and daily social media usage time?

METHODOLOGY

This study was designed using a quantitative approach to determine university students' perceptions of their levels of online social capital. The quantitative research method is appropriate for examining measurable aspects of social behaviors and obtaining generalizable findings (Creswell, 2014). The research employs a survey model, which is a method used to describe the current state of a group or population at a specific point in time (Fraenkel, Wallen, & Hyun, 2012). This model aims to present and analyze the existing situation in detail regarding the research topic (Karasar, 2009).

Population and Sample

This study was conducted with 406 undergraduate students enrolled at a public university in Türkiye to determine their perceptions of online social capital levels. Participants were selected using a simple random sampling method, in which each member of the population has an equal chance of being chosen (Creswell, 2014). In this research, students from eight randomly selected departments—Geography, Child Development, English Language and Literature, Psychology, Sociology, History, Turkish Language and Literature, and Nursing—were included. Mahalanobis distances were calculated to check for outliers, and 12 questionnaires were found to contain erroneous data and were therefore excluded from the analysis.

When examining the demographic variables of the participants, it was found that 78.7% of the students were female, while 21.3% were male. In terms of academic departments, the participants were distributed as follows: Child Development (25.4%), English Language and Literature (23.6%), Turkish Language and Literature (15.0%), Geography (8.6%), Nursing (9.1%), Psychology (6.1%), Sociology (6.1%), and History (6.1%).

Data Collection Tools

In this study, data were collected using two instruments: the Demographic Information Form and the Online Social Capital Scale.

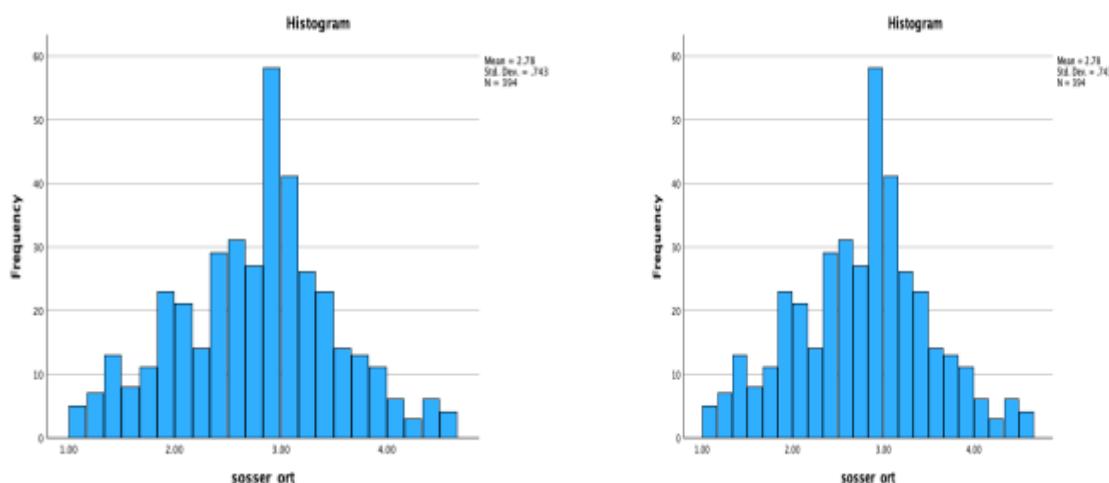
Online Social Capital Scale

The Online Social Capital Scale, developed by Williams (2006), was prepared in a 5-point Likert format and later adapted into Turkish by Mumcu (2021). The scale consists of 20 items grouped under two factors: Bonding Social Capital (10 items) and Bridging Social Capital (10 items). The overall Cronbach's Alpha reliability

coefficient of the scale was found to be .887. For each sub-dimension, the internal consistency coefficients were .809 for Bonding Social Capital and .885 for Bridging Social Capital. Additionally, to evaluate students' perceptions of online social capital based on the arithmetic means obtained from the 5-point Likert-type responses. Accordingly, the following intervals were used for interpretation: Strongly Disagree (1.00–1.80), Disagree (1.81–2.60), Neutral (2.61–3.40), Agree (3.41–4.20), Strongly Agree (4.21–5.00).

In order to test the suitability of the data for factor analysis, the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy and Bartlett's Test of Sphericity were conducted on the scale used in the study (Table 1).

Table 1. KMO and Bartlett's Test Results for the Scale Used in the Study


Scale	Kaiser-Meyer-Olkin (KMO)	Bartlett Küresellik Testi	sig.
Online Social Capital Scale	.907	3274.178	<.001

According to Table 1, the Kaiser-Meyer-Olkin (KMO) value for the Online Social Capital Scale was found to be .907. Considering that KMO values between 0.50 and 1.00 are regarded as acceptable for factor analysis (Altunışık et al., 2010, p. 266), the data structure was deemed adequate for conducting factor analysis. Regarding Bartlett's Test of Sphericity, the chi-square value was calculated as $\chi^2 = 3274.178$, which was statistically significant at the .01 level (sig. < .001). This result indicates that the data are drawn from a multivariate normal distribution, thereby fulfilling another prerequisite for the applicability of factor analysis (Çokluk et al., 2010). Furthermore, the normality values for the Online Social Capital Scale used in the study are presented in Table 2.

Table 2. Normality Values of the Online Social Capital Scale

Statistic	Value
Z value (Skewness)	-.090
Z value (Kurtosis)	-.170
Kolmogorov-Smirnov (K-S) Test	.066
p-value	p .007

According to Table 2, the descriptive statistics and Kolmogorov-Smirnov (K-S) test results related to the normality characteristics of the Online Social Capital Scale were examined. The skewness value was calculated as -0.090. A skewness value between -1 and +1 indicates that the data are approximately normally distributed (Tabachnick & Fidell, 2013). This result suggests that there is no significant skewness in the dataset. The kurtosis value was found to be -0.170. Since the kurtosis value also falls within the acceptable range of -1 to +1, it further supports the normality of the distribution. This indicates that the data do not exhibit excessive peakedness or flatness. The Kolmogorov-Smirnov (K-S) test yielded a result of D(401) = 0.066, p = 0.007. Since the p-value is less than .05, the null hypothesis of normal distribution is rejected. However, the K-S test is known to be highly sensitive to minor deviations from normality in large samples (N > 300) and therefore may not be reliable when used alone (Field, 2009). Taking into account the skewness and kurtosis values, it can be stated that the data are approximately normally distributed. Moreover, to confirm the assumption of normality—especially when parametric tests are to be used—graphical methods such as histograms and Q-Q plots were also employed. These graphical representations are shown in Figure 1 below.

Figure 1. Histogram and Q-Q Plot of the Online Social Capital Scale

In Figure 1, a histogram and Q-Q plot are presented to evaluate the normal distribution of the Online Social Capital Scale. The histogram shows a distribution resembling a bell curve, indicating an approximately normal distribution. The mean value was reported as 2.78, with a standard deviation of 0.743. The distribution appears to be slightly positively skewed; however, there is no evidence of a serious violation of the normality assumption. Moreover, the distribution appears homogeneous, with no significant clustering of extreme values. The Q-Q plot was used to assess how closely the observed data align with a theoretical normal distribution. It was observed that most data points clustered around the normality line, although some noticeable deviations occurred at the lower and upper extremes. This suggests a slight skewness, yet the overall distribution is still acceptably close to normal. When the histogram and Q-Q plot are evaluated together, it can be concluded that the dataset exhibits an approximately normal distribution. Therefore, the use of parametric tests in the subsequent analyses is considered appropriate. The Confirmatory Factor Analysis (CFA) results for the scale used in the study are presented in Table 3.

Table 3. Confirmatory Factor Analysis Results for the Online Social Capital Scale

Fit Index	Online Social Capital	Good Fit Criteria		Acceptable Fit Criteria
		CFA		
χ^2 / sd	3.69	≤ 3		≤ 4.5
AGFI	0.83	≥ 0.90		0.89-0.85
GFI	0.86	≥ 0.90		0.89-0.85
NFI	0.93	≥ 0.95		0.94-0.90
CFI	0.95	≥ 0.97		≤ 0.95
RMSEA	0.08	≤ 0.05		0.06-0.08
SRMR	0.08	≤ 0.05		0.06-0.08

In order to verify the factor structure of the Online Social Capital Scale, a Confirmatory Factor Analysis (CFA) was conducted. The results indicated a Chi-square value of $\chi^2 = 3.69$, $\text{df} = 34$, $p = 0.00$. The fit index values were found as follows: RMSEA = 0.08, CFI = 0.95, GFI = 0.86, AGFI = 0.83, SRMR = 0.08, and NFI = 0.93. Based on these results, the χ^2/df ratio falls within the acceptable range, and the other fit indices are generally at acceptable or near-good levels. Considering that modifications were made between items 1–2, 19–20, and 15–16, the observed improvements in the fit indices indicate that the model achieved a better fit structure. After modification, the GFI and AGFI values remained within acceptable limits, while the NFI and CFI values reached satisfactory levels. The RMSEA and SRMR values being within the acceptable range also demonstrate that the model is generally consistent with the data. The χ^2/df ratio of 3.69 confirms that the model represents an acceptable structure.

Data Collection Process

Prior to conducting the research, ethical approval was obtained from the Ethics Committee of the university where the researchers are employed. After receiving approval, the researchers contacted faculty members teaching in various departments to inform them about the study and to identify suitable classes and times for data collection. Subsequently, during the scheduled sessions, the researchers visited the selected classes and distributed the questionnaire electronically via Microsoft Forms. The data collection was conducted class by class, and students were informed about the purpose of the study, informed consent, confidentiality, and voluntary participation. No personal identifying information was requested from participants. The data were collected during the Spring semester of the 2024–2025 academic year, and each session took approximately 15 minutes to complete.

Data Analysis

The collected data were analyzed using SPSS 29 statistical software. First, the data were cleaned by removing erroneous and outlier values to ensure suitability for analysis. Normality tests were then conducted to determine whether the data met the assumptions for parametric analyses. The Confirmatory Factor Analysis (CFA) of the scale was performed using LISREL 8.8, and model fit indices were evaluated. Descriptive statistics, including frequency, percentage, mean, and standard deviation, were computed. To examine the relationships between the overall scale, its subdimensions, and demographic variables, parametric tests such as t-tests and ANOVA were applied. The significance levels were set at $p \leq .05$ and $p \leq .01$ for all statistical analyses.

RESULTS

In this study, university students' perceptions regarding their overall levels of online social capital, as well as the subdimensions of Bonding Social Capital and Bridging Social Capital, were examined. Descriptive analyses for

the overall scale and its subdimensions are presented in Table 4.

Table 4. Descriptive Statistics for the Overall Scale and Its Subdimensions

	N	Min.	Max.	\bar{x}	SD
Online Social Capital	394	1.00	4.60	2.77	.743
Bonding Social Capital	394	1.00	4.60	2.53	.813
Bridging Social Capital	394	1.00	5.00	3.02	.906

When Table 4 is examined, it is seen that for the overall scale ($\bar{x} = 2.77$, $SD = 0.743$), students' levels of online social capital are at a neutral level. For the Bonding Social Capital sub-dimension ($\bar{x} = 2.53$, $SD = 0.813$), students reported a disagree level of perception. In contrast, for the Bridging Social Capital sub-dimension ($\bar{x} = 3.02$, $SD = 0.906$), students' responses were at a neutral level. Descriptive analyses related to the Bonding Social Capital sub-dimension are presented in Table 5.

Table 5. Descriptive Statistics for the Bonding Social Capital Subdimension

Items in the Bonding Social Capital Subdimension	Statistic		
	N	\bar{x}	SD
1. There are a few people on social media whom I believe would help me solve my problems.	394	2.72	1.286
2. There is someone on social media whose advice I would seek when making very important decisions.	394	2.74	1.356
3. There is no one on social media with whom I feel comfortable discussing my personal problems.	394	2.69	1.384
4. When I feel lonely, there are a few people on social media I can talk to.	394	2.76	1.381
5. If I urgently needed to borrow money, I know someone on social media who could help me.	394	2.15	1.369
6. The people I communicate with on social media would risk their reputation for me.	394	2.15	1.278
7. The people I interact with on social media would provide a good job reference for me.	394	2.44	1.295
8. The people I communicate with on social media would share their last money with me.	394	2.22	1.328
9. I don't know the people on social media well enough to ask them to do anything important for me.	394	2.68	1.378
10. The people I interact with on social media would help me if I were treated unfairly.	394	2.79	1.356

When Table 5 is examined, it is observed that the mean scores for the Bonding Social Capital sub-dimension range between 2.15 and 2.79. The item with the highest mean score ($\bar{x} = 2.79$) is "People I communicate with on social media would help me if I were treated unfairly." Similarly, the statements "There is someone on social media whose advice I would seek when making important decisions" ($\bar{x} = 2.74$) and "There is no one on social media with whom I can comfortably talk about my personal problems" ($\bar{x} = 2.69$) also have relatively higher mean values. These results suggest that individuals receive a certain degree of social support through social media, although they may be hesitant to share private matters. Among the lowest-scoring items are "If I urgently needed to borrow money, I know someone on social media who could help me" ($\bar{x} = 2.15$) and "People I communicate with on social media would risk their reputation for me" ($\bar{x} = 2.15$). These findings indicate that students are generally reluctant to take financial or reputational risks within their social media relationships. Descriptive analyses related to the Bridging Social Capital sub-dimension are presented in Table 6.

Table 6. Descriptive Statistics for the Bridging Social Capital Subdimension

Items in the Bridging Social Capital Subdimension	Statistic		
	N	\bar{x}	SD
11. Communicating with people on social media makes me interested in what is happening outside the place I live.	394	3.22	1.295
12. Communicating with people on social media inspires me to try new things.	394	3.08	1.317
13. Communicating with people on social media increases my interest in what people different from me think.	394	3.15	1.320
14. Communicating with people on social media makes me curious about other places in the world.	394	3.56	1.285

15. Communicating with people on social media makes me feel like I am part of a larger community.	394	2.98	1.265
16. Communicating with people on social media makes me feel connected to the bigger picture.	394	2.85	1.290
17. Communicating with people on social media reminds me that everyone in the world is connected.	394	3.20	1.276
18. I am willing to spend time supporting community events on social media.	394	2.94	1.255
19. Communicating with people on social media helps me find new people to talk to.	394	2.91	1.336
20. I always interact with new people on social media.	394	2.38	1.300

According to Table 6, the mean scores for the Bridging Social Capital sub-dimension range from 2.38 to 3.56. The highest mean score ($\bar{x} = 3.56$) belongs to the item “Communicating with people on social media makes me curious about other places in the world.” Similarly, the statements “Communicating with people on social media makes me interested in what happens outside the place where I live” ($\bar{x} = 3.22$) and “Communicating with people on social media reminds me that everyone in the world is connected” ($\bar{x} = 3.20$) also have relatively high mean scores. These findings indicate that social media contributes positively to increasing individuals’ cultural awareness. On the other hand, the item with the lowest mean score ($\bar{x} = 2.38$) is “I always communicate with new people on social media.” Similarly, “Communicating with people on social media makes me feel connected to the bigger picture” ($\bar{x} = 2.85$) and “Communicating with people on social media helps me find new people to talk to” ($\bar{x} = 2.91$) also received lower mean values. This suggests that while students use social media as a means of interaction and cultural exchange, their sense of belonging to a broader community remains at a moderate level. The t-test results comparing students’ views on the overall scale and sub-dimensions according to gender are presented in Table 7.

Table 7. Students’ Perceptions on the Total Scale and Subdimensions According to Gender

Subscale	Gender	N	\bar{X}	SD	sd	Levene	Sig.	t	Sig.
Online Social Capital	Female	308	2.77	.759	392	.455	.500	-.161	.436
	Male	86	2.79	.683					
Bonding Social Capital	Female	308	2.54	.823	392	1.004	.317	.706	.240
	Male	86	2.47	.782					
Bridging Social Capital	Female	308	3.00	.925	392	.455	.500	-.896	.186
	Male	86	3.10	.835					

p<.05*

According to Table 7, the mean score for female students on the overall scale was $\bar{x} = 2.77$, while for male students it was $\bar{x} = 2.79$. The t-test results ($t = -0.161$, $p = .436$) indicate that there is no significant difference between genders ($p > .05$). In the Bonding Social Capital sub-dimension, the mean score of female students ($\bar{x} = 2.54$) was slightly higher than that of male students ($\bar{x} = 2.47$). However, the t-test result ($t = 0.706$, $p = .240$) again revealed no statistically significant difference between the two groups ($p > .05$). Similarly, in the Bridging Social Capital sub-dimension, the mean score for female students ($\bar{x} = 3.00$) was slightly lower than that for male students ($\bar{x} = 3.10$). The t-test result ($t = -0.896$, $p = .186$) confirmed that this difference was not statistically significant ($p > .05$). Overall, these findings suggest that both male and female students exhibit similar levels of online social capital, indicating that gender does not play a determining role in the formation or perception of social capital through social media. The ANOVA test results regarding students’ views on the overall scale and sub-dimensions according to academic department are presented in Table 8.

Table 8. Students’ Perceptions on the Total Scale and Subdimensions According to Academic Department

Subscale	Department	N	\bar{X}	SD	Source	Sum of Squares	sd	Mean Square	F	p	scheff e
Online Social Capital	Geography	34	2.5618	.705	Between	6.555	7	.936			
	Child	100	2.7510	.795	Within G.	210.432	386	.545			
	English Language & Lit.	93	2.8538	.715	Total	216.987	393		1.718	.103	-
	Psychology	24	2.4938	.760							

	Sociology	24	3.0583	.887							
	History	24	2.8857	.860							
	Turkish Language	59	2.8263	.604							
	Nursing	36	2.7208	.648							
	Levene: 1.159		p=.356								
	Geography	34	2.4647	.856	Between	6.759	7	.966			
	Child	100	2.4140	.874	Within G.	253.568	386	.657			
	English Language & Lit.	93	2.5763	.756	Total	260.328	393				
Bonding Social Capital	Psychology	24	2.2708	.866							
	Sociology	24	2.7708	.917						1.470	.176
	History	24	2.7833	.884							
	Turkish Language & Lit.	59	2.6237	.708							
	Nursing	36	2.5139	.702							
	Levene: 1.546		p=.2150								
Bridging Social Capital	Geography	34	2.6588	.752	Between	11.123	7	1.589			
	Child	100	3.0880	.960	Within G.	311.837	386	.808			
	English Language & Lit.	93	3.1312	.878	Total	322.960	393				
	Psychology	24	2.7167	1.02						1.967	.058
	Sociology	24	3.3458	.994							
	History	24	2.9921	1.05							
	Turkish Language	59	3.0288	.784							
	Nursing	36	2.9278	.802							
	Levene: 1.262		p=.268								
	p<.05*										

According to Table 8, the mean scores across departments for the overall scale ranged from 2.49 to 3.05. The Sociology department had the highest mean score ($\bar{x} = 3.05$, $SD = .887$), while the Psychology department had the lowest ($\bar{x} = 2.49$, $SD = .760$). The results of the ANOVA test ($F = 1.718$, $p = .103$) indicated that there was no statistically significant difference among departments ($p > .05$). These findings suggest that students' levels of Online Social Capital did not differ significantly according to their academic department. In the Bonding Social Capital sub-dimension, departmental mean scores ranged between 2.27 and 2.78. The highest mean belonged to the History department ($\bar{x} = 2.78$, $SD = .884$), while the Psychology department again had the lowest ($\bar{x} = 2.27$, $SD = .866$). The ANOVA test ($F = 1.470$, $p = .176$) revealed no statistically significant difference between departments ($p > .05$). These results indicate that the department variable was not a determining factor in students' bonding relationships established through social media. In the Bridging Social Capital sub-dimension, mean scores varied between 2.65 and 3.34. The Sociology department had the highest mean ($\bar{x} = 3.34$, $SD = .994$), whereas the Geography department had the lowest ($\bar{x} = 2.65$, $SD = .752$). Although the ANOVA test ($F = 1.967$, $p = .058$) approached significance at the 10% level ($p < .10$), it was not significant at the 5% threshold ($p > .05$). This finding suggests that students' levels of cultural interaction and interest in different cultures through social media did not significantly differ by department. The ANOVA test results regarding students' opinions on the overall scale and its sub-dimensions based on daily social media usage time are presented in Table 9.

Table 9. Students' Perceptions on the Total Scale and Subdimensions According to Daily Social Media Usage Time

Subscale	Daily Social Media Usage Duration	N	\bar{X}	SD	Source	Sum of Square s	sd	Mean Square	F	p	scheffe
Online Social Capital	2-4 hours	215	2.80	.760	Between	2.685	3	.895			
	4-6 hours	116	2.76	.690	Within G.	214.302	390	.549			
	6-8 hours	40	2.57	.825	Total	216.987	393		1.629	.182	-
	8 hours or more	23	2.97	.641							
	Levene: 1.884		p=.132								

Bonding Social Capital	2-4 hours	21	2.58	.803	Between	2.387	3	.796		
	4-6 hours	11	2.47	.801	Within G.	257.941	390	.661		
	6-8 hours	40	2.36	.880	Total	260.328	393		1.203	.308
	8 hours or more	23	2.64	.842						-
Bridging Social Capital	Levene: .222			p= .881						
	2-4 hours	21	3.02	.938	Between	4.067	3	1.356		
	4-6 hours	11	3.04	.861	Within G.	318.893	390	.818		
	6-8 hours	40	2.79	.945	Total	322.960	393		1.658	.176
	8 hours or more	23	3.30	.683						-
	Levene: 1.510			p=.211						

p<.05*

According to Table 9, the mean scores for overall online social capital varied between 2.57 and 2.97 according to students' daily social media usage duration. The highest mean was observed among students who used social media for 8 hours or more ($\bar{x} = 2.97$, ss = .641), while the lowest belonged to those who used it for 6–8 hours ($\bar{x} = 2.57$, ss = .825). The ANOVA test results ($F = 1.629$, $p = .182$) revealed no statistically significant difference between groups ($p > .05$). These findings suggest that daily social media usage time does not have a significant effect on students' overall online social capital levels. In the Bonding Social Capital sub-dimension, mean scores ranged from 2.36 to 2.64. The highest average again belonged to students who used social media for 8 hours or more ($\bar{x} = 2.64$, ss = .842), while the lowest mean was found among those using it for 6–8 hours ($\bar{x} = 2.36$, ss = .880). The ANOVA test results ($F = 1.203$, $p = .308$) indicated no statistically significant difference between the groups ($p > .05$). Thus, daily social media use time did not create a meaningful variation in Bonding Social Capital. Regarding the Bridging Social Capital sub-dimension, mean scores varied between 2.79 and 3.30. The highest mean belonged to students who used social media for 8 hours or more ($\bar{x} = 3.30$, ss = .683), while the lowest belonged to those using it for 6–8 hours ($\bar{x} = 2.79$, ss = .945). Although these findings show a tendency for higher bridging capital with increased social media use, the ANOVA results ($F = 1.658$, $p = .176$) confirmed that this difference was not statistically significant ($p > .05$). Overall, while students who spend more time on social media may have slightly higher bridging social capital levels, the effect of social media usage duration on both bonding and bridging dimensions was not significant.

DISCUSSION

The present study aimed to determine university students' levels of online social capital in relation to variables such as gender, academic department, and daily social media usage time. The results indicate that university students' online social capital levels are generally at the undecided level. The findings revealed that students' overall levels of online social capital were at a moderate (neutral) level. Students' responses in the bonding social capital sub-dimension indicated a tendency toward disagreement, suggesting that relationships formed through social media involve limited trust, closeness, and mutual support. In contrast, the bridging social capital sub-dimension was found to be at a neutral level, implying that while social networks provide potential opportunities for broader interaction, these interactions are not yet strongly established. It can be argued that the generally undecided level of online social capital among university students is closely related to the nature of social media use. The findings show that students primarily engage in information sharing, everyday interactions, and relationships based on weak ties on social media platforms, whereas bonding social capital that requires trust and emotional closeness develops only to a limited extent. From a theoretical perspective, this situation becomes more meaningful when interpreted within Putnam's distinction between bonding and bridging social capital. Accordingly, social media environments provide individuals with access to information and connections to broader social networks through weak ties, while offering limited support for the development of strong ties that require trust, reciprocity, and emotional closeness. This finding is consistent with previous studies suggesting that social media tends to support social capital mainly through information exchange and weak ties rather than deepening close interpersonal relationships (Ellison, Steinfield, & Lampe, 2007; Valenzuela, Park, & Kee, 2009). Moreover, in online learning environments, the development of social capital depends less on the technology used and more on pedagogical designs with high levels of interaction, collaborative learning activities, and learning processes that encourage meaningful social interaction among students (Hrastinski, 2009; Garrison, Anderson, & Archer, 2010).

In the Bonding Social Capital sub-dimension, the item with the highest mean score was "The people I communicate with on social media help me when I experience an injustice." Similarly, the statements "I have someone to consult when making very important decisions on social media" and "There is no one on social

media with whom I can comfortably talk about my personal problems" also had relatively high mean scores. This suggests that individuals receive a certain level of support through social media, yet they may hesitate to share personal or sensitive matters. The items with the lowest means were "If I urgently need to borrow money, I know someone on social media who can help me" and "The people I communicate with on social media would risk their reputation for me." These findings indicate that students tend to avoid taking financial or reputational risks in their online relationships. Similarly, Ellison, Steinfield, and Lampe (2007) reported that online networks offer informational and emotional support but remain limited in fostering strong, reciprocal bonds. Therefore, the current study aligns with prior research, suggesting that social media primarily facilitates the exchange of information and ideas among students but is less effective in deepening bonding social capital.

In the Bridging Social Capital sub-dimension, the item with the highest mean score was "Communicating with people on social media makes me curious about other parts of the world." Similarly, the statements "Communicating with people on social media helps me become interested in what is happening outside the place where I live" and "Communicating with people on social media reminds me that everyone in the world is connected" also received high mean scores. This finding suggests that social media plays an effective role in enhancing individuals' cultural awareness. On the other hand, the items with the lowest mean scores — "I always communicate with new people on social media," "Communicating with people on social media makes me feel connected to the bigger picture," and "Communicating with people on social media helps me find new people to talk to" — indicate that individuals' sense of belonging to a larger community through social media remains moderate. Similarly, Valenzuela, Park, and Kee (2009) as well as Kwon and Wen (2010) emphasized that social networking platforms can broaden individuals' cultural awareness and cognitive horizons, yet remain limited in fostering strong, enduring social ties.

The findings of the study revealed that students' levels of online social capital did not differ significantly according to their academic departments. While the overall scale showed the highest mean score among Sociology students and the lowest among Psychology students, these differences were not statistically significant, indicating that departmental variations in social media use are relatively minor. In the Bonding Social Capital sub-dimension, the History department exhibited the highest mean score, which may reflect history students' stronger orientation toward community belonging and solidarity in their social interactions; however, the absence of a statistically significant difference suggests that this tendency is not a strong determinant. Similarly, in the Bridging Social Capital sub-dimension, students' levels of cultural awareness and interaction through social media appeared to be independent of their academic departments. This finding aligns with the results of Ellison, Steinfield, and Lampe (2007) and Kwon and Wen (2010), who emphasized that social media interactions are shaped more by individual online experiences than by academic or professional identity.

The findings of the study revealed that students' daily social media usage time did not create a statistically significant difference in their levels of online social capital. Although students who used social media for eight hours or more had slightly higher mean scores than other groups, this difference was not statistically significant. This suggests that the amount of time spent on social media alone does not enhance social capital; rather, the quality and nature of engagement play a more decisive role. Similarly, Ellison, Steinfield, and Lampe (2007) emphasized that time spent on social media contributes to social capital only when it involves active participation and interaction. Ahn (2012) also noted that the frequency of social media use does not show a linear relationship with social capital levels, highlighting that active sharing, rather than passive browsing, is more effective. Supporting this, Appel, Marker, and Gnambs (2020) and Błachnio, Przepiorka, and Pantic (2016) suggested that intensive social media use may increase superficial interactions rather than improving the quality of social relationships.

LIMITATIONS

This study has several limitations. First, the sample is limited to students enrolled at a single university, which may restrict the generalizability of the findings to other institutional and contextual settings. In addition, the use of self-report data may introduce response bias, as participants' answers are based on their perceptions and may be influenced by tendencies toward socially desirable responding. Furthermore, conducting the study within a single-university context limits the ability to compare manifestations of online social capital across different institutional and cultural environments. Therefore, future research involving multiple universities, larger samples, and the use of multiple data collection methods is recommended to achieve a more comprehensive understanding of online social capital.

RECOMMENDATIONS

Based on the findings of this study, it is recommended that universities create digital environments where

students can collaborate, participate in joint projects, and build trust-based communication online. Educators should view social media not merely as a tool for information sharing but as an interactive space that enables peer learning and mutual support among students. To this end, integrating topics such as digital citizenship, online ethics, and responsible media use into course content can help encourage students to use social media in a more meaningful, responsible, and socially engaging manner that strengthens their social bonds.

REFERENCES

Ahn, J. (2012). *Teenagers and social network sites: The relationship between use and social capital*. Social Science Computer Review, 30(2), 143–157. <https://doi.org/10.1177/0894439310396408>

Altunışık, R., Coşkun, R., Bayraktaroğlu, S., & Yıldırım, E. (2010). *Sosyal bilimlerde araştırma teknikleri* (6. Baskı). İstanbul: Sakarya Yayıncıları.

Appel, H., Marker, C., & Gnambs, T. (2020). *Are social media users more satisfied with their lives? The impact of social media use on well-being: A meta-analysis*. Computers in Human Behavior, 104, 106153. <https://doi.org/10.1016/j.chb.2019.106153>

Aral, S., Muchnik, L., & Sundararajan, A. (2009). Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. *Proceedings of the National Academy of Sciences*, 106(51), 21544–21549. <https://doi.org/10.1073/pnas.0904886106>

Błachnio, A., Przepiorka, A., & Pantic, I. (2016). *Association between Facebook addiction, self-esteem and life satisfaction: A cross-sectional study*. Computers in Human Behavior, 55, 701–705. <https://doi.org/10.1016/j.chb.2015.10.026>

Boyd, D. M., & Ellison, N. B. (2008). Social network sites: Definition, history, and scholarship. *Journal of Computer-Mediated Communication*, 13(1), 210–230.

Burke, M., Marlow, C., & Lento, T. (2010). Social network activity and social well-being. *CHI Proceedings*, 1909–1912.

Burt, R. S. (1992). *Structural holes: The social structure of competition*. Harvard University Press.

Coleman, J. S. (1988). Social capital in the creation of human capital. *American Journal of Sociology*, 94, S95–S120.

Creswell, J. W. (2014). *Research design: Qualitative, quantitative, and mixed methods approaches* (4th ed.). Thousand Oaks, CA: SAGE Publications.

Çokluk, Ö., Şekercioğlu, G., Büyüköztürk, Ş. (2010). *Sosyal bilimler için çok değişkenli istatistik: SPSS ve LISREL uygulamaları*. Ankara: Pegem Akademi Yayıncılık.

Ellison, N. B., Steinfield, C., & Lampe, C. (2007). The benefits of Facebook “friends:” Social capital and college students’ use of online social network sites. *Journal of Computer-Mediated Communication*, 12(4), 1143–1168. <https://doi.org/10.1111/j.1083-6101.2007.00367.x>

Field, A.P. (2018). *Discovering statistics using IBM SPSS statistics*. 5th Edition, Sage, Newbury Park.

Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2012). *How to design and evaluate research in education* (Eight Edition). New York: McGraw-Hill.

Garrison, D. R., Anderson, T., & Archer, W. (2010). The first decade of the community of inquiry framework: A retrospective. *The Internet and Higher Education*, 13(1–2), 5–9. <https://doi.org/10.1016/j.iheduc.2009.10.003>

Gonzales, A. L., & Hancock, J. T. (2021). *Technology-mediated social interactions and well-being in college students*. Computers in Human Behavior, 121, 106790. <https://doi.org/10.1016/j.chb.2021.106790>

Hampton, K. N., Sessions, L. F., & Her, E. J. (2011). Core networks, social isolation, and new media: How internet and mobile phone use is related to network size and diversity. *Information, Communication & Society*, 14(1), 130–155.

Haythornthwaite, C. (2005). Social networks and Internet connectivity effects. *International Journal of Human-Computer Studies*, 63(4-5), 376–394.

Hrastinski, S. (2009). A theory of online learning as online participation. *Computers & Education*, 52(1), 78–82. <https://doi.org/10.1016/j.compedu.2008.06.009>

Islam, A., & Widin, J. (2022). *Social media use, belonging, and academic engagement among university students*. Education and Information Technologies, 27, 11519–11536. <https://doi.org/10.1007/s10639-022-11150-9>

Junco, R. (2012). *The relationship between frequency of Facebook use, participation in Facebook activities, and student engagement*. Computers & Education, 58(1), 162–171. <https://doi.org/10.1016/j.compedu.2011.08.004>

Karasar, N. (2009). *Bilimsel araştırma yöntemleri*. Ankara: Nobel Yayın Dağıtım.

Kwon, K. H., & Wen, Y. (2010). *An empirical study of the factors affecting social network service use*. Computers in Human Behavior, 26(2), 254–263. <https://doi.org/10.1016/j.chb.2009.04.011>

Lee, K. M. (2012). Examining the relationship between college students’ online social capital and academic performance. *Computers in Human Behavior*, 28(4), 1425–1428.

Li, C., & Bernoff, J. (2011). *Groundswell: Winning in a world transformed by social technologies*. Harvard Business Review Press.

Lin, N. (2001). *Social capital: A theory of social structure and action*. Cambridge University Press.

Marsden, P. V., & Campbell, K. E. (1984). Measuring community social capital. *Current Anthropology*, 25(5), 523–535.

Mumcu, A. Y., Ataman Berk, G., & Konuk, H. (2023). Çevrimiçi sosyal sermaye ölçüğünü Türkiye'de uyarlama çalışması. *Öneri Dergisi*, 18(60), 543-560.

Park, N. (2009). The social capital network: Connectivity on the Internet and the willingness to participate. *Journal of Information Technology*, 24(2), 91–110.

Phua, J., Jin, S. V., & Kim, J. J. (2020). *Uses and gratifications of social networking sites for bridging and bonding social capital: A comparison of Facebook, Twitter, Instagram, and Snapchat*. *Computers in Human Behavior*, 72, 115–129. <https://doi.org/10.1016/j.chb.2020.106760>

Putnam, R. D. (2000). *Bowling alone: The collapse and revival of American community*. Simon & Schuster.

Şahin, C. (2017). *The predictive level of social media addiction for life satisfaction among university students*. *The Turkish Online Journal of Educational Technology*, 16(1), 63–70.

Tabachnick, B. G. & Fidell, L. S. (2007). *Using multivariate statistics*. (5th ed.). Allyn & Bacon/Pearson Education.

Valenzuela, S., Park, N., & Kee, K. F. (2009). *Is there social capital in a social network site? Facebook use and college students' life satisfaction, trust, and participation*. *Journal of Computer-Mediated Communication*, 14(4), 875–901. <https://doi.org/10.1111/j.1083-6101.2009.01474.x>

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly*, 27(3), 425–478.

Williams, D. (2006). On and off the 'net: Scales for social capital in an online era. *Journal of Computer-Mediated Communication*, 11(2), 593–628.

Yığman, F. (2021). *Social media addiction among Turkish young adults is associated with social problem-solving, dysfunctional attitudes, and automatic thoughts*. *Psychiatry Research*, 303, 114098. <https://doi.org/10.1016/j.psychres.2021.114098>

Zhu, Y., Chen, L., & Evans, R. (2020). *Social media and emotional health: The mediating role of social capital*. *Computers in Human Behavior*, 114, 106549. <https://doi.org/10.1016/j.chb.2020.106549>

Exploring the Effectiveness of AI-Generative Tools in Improving Vocabulary and Engagement among Elementary School Students in Oman

Fatma AL Naabi

Sultan Qaboos University, Oman.
alnaabi35@gmail.com
<https://orcid.org/0009-0009-8914-2489>

Maimoona Al Abri

Sultan Qaboos University, Oman.
m.alabri4@squ.edu.om
<https://orcid.org/0000-0001-9075-7581>

ABSTRACT

Generative AI is a type of artificial intelligence that can enhance English vocabulary acquisition significantly. This study deploys a mixed methods approach investigating the effectiveness of AI-generative tools in improving the vocabulary and engagement of Omani 4th grade students in English Subject. Data was gathered using three instruments: (1) an English achievement test (pre-posttest), (2) an observation checklist and (3) a semi-structured interview. The pre-posttest measures the impact of using the Curipod tool on the students' English vocabulary. The sample includes 62 fourth-grade students at Al-Abrar School for Basic Education (grades 1-4), 30 students in the experimental group and 32 in the control group. The observation checklist inspects the 62 students across both groups while the semi-structured interview was administered to two teachers responsible for the groups. The findings indicate that students exposed to the Curipod tool showed significant improvement in their post-test and that they exhibited higher levels of engagement than those who did not use the tool. Therefore, the study recommends that educators and policy makers integrate AI-driven tools such as Curipod into Oman's English education to enhance vocabulary acquisition and academic performance. They should also provide teachers with structured training to assist them using these technologies effectively.

KEYWORDS: generative artificial intelligence, curipod tool, K-12 education, vocabulary acquisition, effectiveness, engagement.

INTRODUCTION

Due to the rapid advancement of technology and the impact of the COVID-19 dilemma, educational associations have hastened to adjust swiftly to the evolving situations. Accordingly, teachers start using platforms like Moodle and Microsoft Teams to teach students directly and provide supplementary tools for independent learning. These platforms have become essential in maintaining the continuity of education during these challenging times (Kashoob & Attamimi, 2021). Many scholars emphasize the benefits of online educational platforms. For instance, Jabbar Alkubaisi et al. (2021) investigate the effectiveness of Blackboard, Moodle and Google Classroom and their impact on education in Oman assessing their usability, content quality and overall effectiveness. The findings point out that all three platforms support education in Oman, with Blackboard ranking the highest in terms of usability and content quality. They also confirm that effective online learning platforms are influenced by factors such as teacher training, student motivation and access to technology.

Currently, the integration of AI in education renovates e-learning by personalizing experiences, automating administrative tasks and offering adaptive learning pathways for students. Firat (2023) argues that the incorporation of AI tools can improve the structure of learning management systems and online learning opportunities. Concepcion and Espino (2023) highlight the potential of AI in enhancing LMS platforms and providing personalized learning experiences for students which can effectively improve students' engagement and motivation.

Dewi et al. (2021) underline the potential benefits of integrating AI tools with traditional English teaching methods to provide a more personalized and interactive learning experience. In the context of EFL, Jiang (2022) explores six popular applications of AI: AI chatbots, intelligent tutoring systems, automatic assessment systems, neural machine translation tools, intelligent virtual environments and affective computing in ITSs. The study confirms that these AI tools can deliver personalized feedback, on-demand support and immersive and interactive learning experiences assisting students to improve their language skills and self-regulated learning abilities.

Similarly, AI tools have a significant impact on enhancing English vocabulary. According to Qasem et al. (2023), interactive AI tools like dialog chatbots are instrumental in improving learning English for Specific Purposes vocabulary. Furthermore, Noviyanti (2020) demonstrates that AI-driven pronunciation education leads to significant advancements in vocabulary acquisition. Al-Humaidi et al. (2021) argue that Omani students face a major obstacle when communicating in English due to their limited vocabulary which are attributed to different factors involving learners, learning settings, curriculum and teachers as identified through the perspectives of multiple stakeholders. In addition, Liao (2023) explores the user's retrieval behavior in English mobile learning, focusing on AI-based English Vocabulary Test Research (AI-EVTR) on Cognitive Web Services Platforms. The study aims to enhance the effectiveness of English vocabulary instruction through AI and pre-test behavior analysis. Despite the initial low motivation of the experimental group, statistical analysis, including independent sample tests, reveals significant improvements in spelling between pre- and post-tests of the experimental group suggesting that AI-based tools can effectively enhance English vocabulary learning on digital platforms.

Considering the challenges mentioned above and the critical role of AI in English vocabulary teaching, this research intends to take a step further and assess the impact of Curipod on teaching vocabulary and engagement of Omani 4th grade students in English classes.

Definitions of Terms:

- Effectiveness: The degree of success in producing a desired result or achieving a goal (Gager, 2018). Operationally, it refers to the degree of success attained by learners using the Curipod tool to raise the vocabulary level and enhance the engagement of the fourth-grade students.
- Curipod tool: AI-generative tool that enables teachers to produce digital content and activities to motivate students and stimulate curiosity, discussion and critical thinking in classrooms (Sbardella & Montanucci, 2024). It is operationally defined as an interactive educational site where English content and activities are uploaded and delivered to students to facilitate discussions, provide assignments and activities and evaluate results to elevate the vocabulary level and engagement of fourth-grade students.
- Academic achievement: The results or accomplishments that individuals achieve in educational environments which are usually assessed by completing assignments, exams and other educational activities (Cooper et al., 2006). Operationally, it refers to the score that a learner obtains in the English vocabulary posttest, which the subject's teacher conducts.
- Engagement: A complex concept that includes behavioral, emotional and cognitive aspects highlighting various ways of students' interactions with their learning environment (Fredricks et al., 2004). It is operationally defined as the emotional and cognitive measurement of student participation in English classes using observation checklists and interviews as tools to evaluate students' engagement.

LITERATURE REVIEW

THEORITICAL BACKGROUND

Integrating AI tools into education offer potential to enhance learning experience, adapt instruction and boost students' engagement which align with constructivist learning principles to empower learners to actively engage with content, explore and construct their own understanding (Thongprasit & Wannapiroon, 2022). Jackson (2024) also declares that AI supports constructivist learning theory by emphasizing active engagement, knowledge construction and personalized learning experiences and that AI technologies, such as Intelligent Tutoring Systems, facilitate active learning through interactive scenarios and immediate feedback. AI adapts content and strategies suitable to individual students' needs and creates personalized learning environments allowing them to actively participate in the learning process and explore topics at their own pace aligning with the constructivist principle that learners construct meaning through hands-on experiences and personalized interactions with AI systems.

Grubaugh et al. (2023) explore integrating AI tools with the constructivist philosophy of education to augment teaching and learning methods emphasizing that AI's adaptive capabilities are consistent with the constructivist principles as they offer personalized and enriching learning experiences. While applying AI platforms such as ChatGPT, BARD and Microsoft Bing, educators can elevate constructivist pedagogy boosting students' engagement, metacognition and conceptual change. The study also highlights the importance of preserving humanistic values in AI integration to sustain an ethical and inclusive educational environment.

AI in English Language Learning Context:

Dewi et al. (2021) examine using AI chatbots to improve students' language skills and self-regulated learning abilities. The study involves 30 students from the English Department at Universitas Airlangga, Indonesia. It finds out that implementing AI chatbots positively influences learners' language skills and SRL abilities and affirms the potential benefits of integrating AI tools with traditional teaching methods to provide a more personalized and interactive learning experience. However, it identifies the need for further research related to adopting AI in education to fully realize these tools' potential.

Jiang (2022) reviews the application of AI in education focusing on teaching and learning English as a foreign language (EFL). The study evaluates six main applications of AI in the EFL context including: automatic assessment systems, neural machine translation tools, intelligent tutoring systems, AI chatbots, intelligent virtual environments and emotional computing in ITSs. These AI tools offer personalized feedback, on-demand support as well as immersive and interactive learning experiences assisting students to improve their language skills and self-regulated learning abilities. The review suggests that AI can potentially empower EFL teaching and learning, but further research and development are required to harness its benefits.

Liao (2023) investigates the user retrieval behavior of English mobile learning with a particular focus on AI-based English Vocabulary Test Research (AI-EVTR) on Cognitive Web Services Platforms. This study explores the effectiveness of English vocabulary instruction by incorporating AI and pre-test behavior analysis adopting a quasi-experimental design consisting of two groups: an experimental group and a control group. The experimental group used an APP-assisted vocabulary questionnaire to help them learn English whereas the control group adopted a conventional teaching method. The collected data was analyzed using statistical methods such as independent samples. The study proposes that although the experimental group lacked the motivation to use the web provided, their spelling significantly improved between the pre- and post-tests showing that language learning on websites is an applicable option for students demonstrating the significant role of AI-based tools in enhancing English vocabulary learning.

Additionally, Qasem et al. (2023) examine using dialog chatbots as interactive online tools to boost learning of English for Specific Purposes (ESP) vocabulary. The study observes how well students learned ESP vocabulary using the chatbot and evaluates their attitudes utilizing this strategy. The findings point out that vocabulary knowledge of the experimental group significantly improved compared to the control group and that the participants had positive attitudes towards using the chatbot, with most of them finding it helpful and enjoyable. The study argues that using a dialog chatbot as an interactive online tool can effectively enhance ESP vocabulary learning and improve students' attitudes toward learning. Another study conducted by Oktadela et al. (2023) at SD-IT Iman Syafei Pekanbaru Elementary School aims to enhance students' vocabulary using an AI chatbot application. The training focuses on enriching English vocabulary, cultivating interest and creativity in English and improving participants' communication skills using English. The training provides a combination of lectures, demonstration and hands-on practice methods stressing on learning by doing and practical application. Although the AI chatbot application was still unfamiliar, the training's outcomes display that all participants were enthusiastic and motivated to learn and that they acquired knowledge of using the application and could continue learning independently, anytime and anywhere.

Polyzi and Moussiades (2023) explore the development and impact of an online application as a learning assistant designed to enhance vocabulary acquisition applying interactive methods such as games, quizzes and chatbots. This study involves 20 students enrolled in an English course at the International Hellenic University in Kavala, Greece who were learning English at a proficiency level and aiming to improve their vocabulary skills. They were divided into two groups: Group A and Group B based on their pre-test results to ensure comparable English proficiency levels in both groups in two stages. In the first stage of the study, Group A was the control group, studying a vocabulary section from a book while group B was the experimental group deploying the proposed application to learn the same vocabulary section. In the second stage, the roles of the two groups were reversed. This crossover design ensures that all participants experienced both methods allowing for a more comprehensive comparison of their effectiveness. Post tests and questionnaires were used to assess the efficacy of the application and to gather feedback from the students regarding their perceptions and satisfaction. The results imply positive students' feedback reporting that the interactive and engaging nature of the application made the learning process more enjoyable and effective.

Kazu and Kuvvetli (2023) investigate the influence of AI-driven pronunciation education on English language vocabulary acquisition employing "Games for Learning English" web service. The research, authorized by the Ministry of National Education, examines how pronunciation training affects word retention among 56 high school students (34 females, 22 males) aged 14-15 using pre-test and post-test design. It adopts an experimental approach with purposeful sampling and qualitative feedback that was gathered through post-experiment semi-structured interviews. The experimental group received AI-based speech recognition pronunciation training while the control group used phonetic alphabet pronunciation. The findings reveal that the experimental group showed a significant improvement in vocabulary acquisition compared to the control group, highlighting the effectiveness of AI techniques in pronunciation teaching.

Zhang and Huang (2024) conducted a comprehensive study assessing the influence of chatbots based on Large Language Models (LLMs) on second language learners' vocabulary acquisition. The study applies mixed methods

combining qualitative observations and quantitative assessments to measure receptive and productive vocabulary knowledge. It involves 52 foreign language students randomly divided into experimental and control groups. The experimental group interacted with an AI Chatbot based on LLMs for eight weeks whereas the control group did not. Results indicate notable improvements in both receptive and productive vocabulary acquisition among students who interacted with the chatbot compared to those who did not, underscoring the potential of AI-driven educational tools to enrich language learning experiences and permit further exploration in diverse educational contexts. The study stresses chatbot's significant role in enhancing vocabulary learning outcomes, promoting incidental vocabulary acquisition and supporting students' self-regulated learning processes.

The Impact of Technology on Students' Engagement and Academic Performance:

Technology positively influences students' engagement leading to improved learning outcomes across different subject areas. Morris and Parker (2014) investigate the relationship between classroom technology and students' engagement and note that growing usage of educational technologies in higher education improves learning outcomes and student engagement. They emphasize the importance of incorporating technology into the development of curricula to enhance learner engagement across behavioral, emotional and cognitive dimensions. The study shows that educational technologies positively affect student satisfaction, motivation, performance and sense of connection.

Correspondingly, the study by Serrano et al. (2019) on Technology-Enhanced Learning in higher education focusing on increasing student engagement through blended learning approaches underscore the extensive use of educational technologies to respond to the changing requirements of higher education, particularly with the transition to online education. It underlines the significance of incorporating substantial levels of technology into curriculum design and delivery to effectively engage students, proposing that educational technology creates opportunities for designing and providing learning resources.

Bedenlier et al. (2020) conducted a systematic review within the arts and humanities domain exploring how educational technology can improve students' engagement in higher education. The study examines 42 peer-reviewed studies on language acquisition that were mostly published in East Asian nations between 2007 and 2016. The evaluation focuses on how well assessment tools, blogs and mobile learning are deployed to foster participation. According to the review, instructional technology augments students' involvement, with behavioral engagement being the most noticeable aspect. However, it asserts the importance of combining technology with efficient education to avoid student disengagement.

Heilporn et al. (2021) investigate instructors' strategies in higher education exploring educators' various approaches and practices to enhance students' engagement, interaction and learning outcomes in Blended Learning (BL) settings. It offers insights into how teachers construct interactive learning practices for higher education students utilizing technology and traditional teaching methods effectively. The findings point out that combining well-structured courses, clear communication, digital tools and carefully selected activities can enhance student engagement in blended learning.

Pechenkina et al. (2017) explore the effect of using gamified mobile learning apps on students' academic success, retention and engagement. The sample includes 711 first-year accounting and science students. The study signifies that students utilizing the app achieved higher final grades and were less likely to fail the subject showing that gamified mobile app positively impact student engagement, retention and academic achievement.

Eltahir et al. (2021) study the influence of game-based learning (GBL) on students' academic performance, motivation and engagement in an Arabic language grammar course at Ajman University. They employ a case study with a quasi-empirical design including 107 students who were split into two groups: the experimental group ($n = 54$), using a game-based classroom response system, and the control group ($n = 53$), which did not apply the system. The results disclose that students in the experimental group showed greater growth in their understanding of the ideas covered in the course and displayed greater motivation than the control group students.

In contrast, during the COVID-19 pandemic Salta et al. (2021) explore students' engagement in online and face-to-face learning settings. The study reveals little emotional involvement with online learning, indicating a disparity in emotional connection between the two learning modes. Aguilera-Hermida (2020) also investigate college students' attitudes, adoption and use of emergency online learning (EOL) during the pandemic. It identifies a relationship between students' cognitive engagement and their attitudes, noting a decline in cognitive engagement during the pandemic. Moreover, Aguilera-Hermida (2020) examine the association between cognitive engagement and students' attitudes toward EOL delivery methods. The study concludes that students exhibited negative attitudes toward EOL and had lower cognitive engagement levels.

Furthermore, Alawamleh et al. (2020) detect a decline in online learning communication between students and their instructors during the COVID-19 pandemic. This implies a potential challenge in maintaining effective communication and interaction between students and instructors in the online learning environment which could affect student engagement negatively.

Based on the above studies, it is obvious that AI tools and online platforms play an imperative role in enhancing students' engagement and academic performance during the learning process. Similarly, Curipod is an AI tool that assists teachers create engaging and thought-provoking digital classroom activities (Sbardella & Montanucci, 2024) attracting students' attention and improving their performance. In addition, Al-Humaidi et al. (2021) state that Omani students encounter difficulties when communicating in English due to their limited vocabulary. Accordingly, the study investigates using the Curipod tool to enhance the engagement and vocabulary acquisition of fourth grade students in Oman.

METHODOLOGY

RESEARCH DESIGN

This study employs a mixed-method research design to explore the impact of an AI-generated tool (Curipod) on vocabulary acquisition and engagement levels of fourth-grade students in English subject in Oman. Kashoob and Attamimi (2021) suggest that upcoming studies could benefit from applying mixed-methods approach combining various methods to gather data such as questionnaires, observations and interviews. This study intends to obtain more comprehensive and insightful findings by conducting pre-posttest, observation checklists and semi-structured interviews for complementation purposes. Specifically, it employs a Concurrent Nested Design to gather and analyze quantitative and qualitative data concurrently. In this design, the primary method is quantitative research while qualitative research is the secondary method. The combination of both methodologies within a single study provides a richer understanding of the research questions. The specifics of this research design are depicted in Figure 1 below:

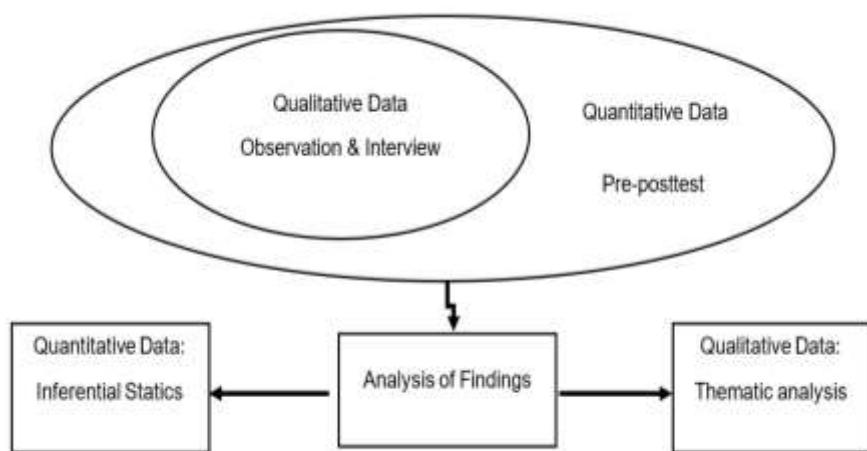
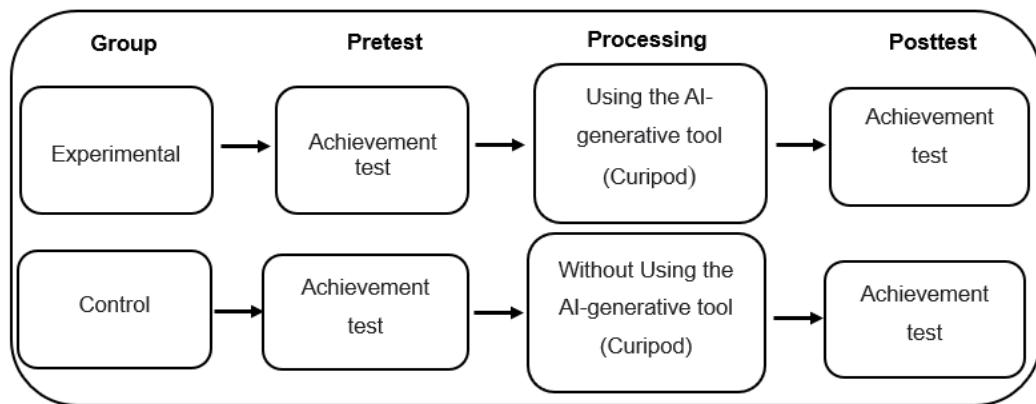



Figure 1. Concurrent Nested Mixed Method Research Design

This study examines the impact of the Curipod tool using quantitative and qualitative data. In the quantitative section, the effect of the independent variable (the Curipod tool) on the dependent variable (the achievement test) was evaluated employing a quasi-experimental design, more precisely, a non-equivalent control group design. Al-Saeedi et al. (2017) state that experimental approach is usually carried out when the goal is to expect future corrective or preventive changes required for the studied phenomenon. In the qualitative part, an observation checklist and semi-structured interviews were utilized to evaluate students' engagement while using the Curipod tool.

The Quantitative Method (Research Primary Method)

This research incorporates an experimental group and a control group, applying both pre- and post-test, as illustrated in Figure 2 below. The experimental group worked with the English materials deploying the AI-generative tool (Curipod) whereas the control group worked with the same materials following a conventional teaching method. The performance of both groups was compared after the intervention to gauge the impact of the AI-generative tool-based learning on the experimental group.

Figure 2. Experimental Design of the Study

The sample of the study includes (n=62) fourth-grade students from Al-Abrar School for Basic Education (Grades 1-4) in the Wilayat of Al Hamra. The selection of this school is based on convenience, as the researcher was available there. The research sample was split into two sections:

1. The Study's Main Sample: It involves (n=62) fourth-grade students; two fourth-grade classes (control and experimental) randomly chosen from the six classes available at the school to ensure equal representation, minimize selection bias and enhance the generalizability and validity of the study's findings. The distribution of the main study sample among the study groups is illustrated in Table (1) below.

Table 1: Distribution of the Main Study Sample to the Study Groups

No	School	Group	Teaching strategy	No. of students	Total
1.	Al-Abrar School for Basic Education (1-4)	Experimental	Using the AI-generative tool (Curipod)	30	62
2.	Al-Abrar School for Basic Education (1-4)		Without using the AI-generative tool (Curipod)	32	

2. The Exploratory Sample: It contains 32 fourth-grade students from the same school, selected applying a random sampling method. The researcher administered an achievement test to these students to validate and ensure the reliability of the study instrument.

Data Collection Tools:

Achievement Test

It addresses the first research question and was prepared to meet the following requirements:

1. Determining the purpose of the test to measure the vocabulary level of the 4th-grade students in the English language.
2. Determining procedural educational objectives which were structured based on Bloom's taxonomy of cognitive domains, specifically targeting the levels of remembering, understanding and application.
3. Preparing the specification table that includes a range of factors which are: the educational objectives of the educational content, the number of questions aligned with cognitive levels (recall, comprehension, application) and the significance weight of the lessons and objectives.
4. Formulating test questions considering a number of factors such as presenting the question as a direct question or an incomplete sentence to ensure clarity, scientific accuracy, specificity and brevity. The test has ten multiple-choice questions that were designed to be straightforward and free from complexity and ambiguity.
5. Instructions for using the test are crucial for its application, so the following aspects were considered when preparing them: using clear and precise language, providing a brief overview of the test, detailing its structure and explaining the answering method.
6. Psychometric characteristics of the test include:
 - o Test Validity: Content and Face validity was applied to measure the test validity. The researcher presented the achievement test to several senior English teachers and a group of female teachers at AL-Abrar school (1-4), and they evaluated the test in terms of its appropriateness for the students' level, clarity and accuracy.

- Test Reliability: To verify the consistency of the study scale, the researcher administered the test to 32 participants in a pilot group. The test has high stability as indicated by the Cronbach Alpha value of 0.78.

7. Test correction method depends on giving students a mark for the correct answer and zero for the wrong answer. The test results are used as indicators for the students' achievement in the units that the study focused on.
8. The final version of the English vocabulary test: After implementing the previous steps and considering the comments specified by the experts, the test's final draft was ready to use.

The Qualitative Method (Secondary Method):

A qualitative approach was carried out using semi-structured interviews and an observational checklist which allow the researcher to gather rich and detailed data providing valuable insights into the effectiveness of the Curipod tool to enhance fourth-grade students' English vocabulary.

Observation Checklist:

It was utilized to record the behavior and interactions of the study's participants as well as the events taking place during the English classes. The observation checklist was prepared in accordance with several studies related to students' engagement. Three instruments developed by Lee et al. (2019), Zaabanoot (2021) and Cevikbas and Kaiser (2021) were selected to determine students' engagement indicators. The final version of the checklist comprises two dimensions: emotional and cognitive engagement considered as main themes, with three indicators for each (see Table 2). For about four weeks, the observation checklist was employed to observe and record the performance of the study's sample: the Control group (n=32) and the Experimental group (n=30). Then, the data obtained was synthesized and analyzed based on the pre-existing themes and indicators stated in the checklist.

Table 2. The Observation Checklist

Engagement Dimensions	Indicators
Emotional	<ul style="list-style-type: none"> ● Interest and Motivation ● Perceived Usefulness ● Sense of Connection and Belonging
Cognitive	<ul style="list-style-type: none"> ● Critical Thinking and Application ● Collaborative Learning ● Seeking Support and Clarification

Three instructional and learning technology experts and a psychology expert from Sultan Qaboos University (SQU) reviewed the observation checklist's content and face validity and it was adjusted based on their comments. Its credibility was evaluated using Peer Debriefing as a criterion for trustworthiness. Peer debriefing is a valuable strategy with supervisors and educators identifying weaknesses and managing perceptions and biases (Guba, 1981). In this process, the researcher shared the findings of the observation checklist with supervisors and educators, and their insights and feedback were used to refine and enhance the checklist.

The observation checklist was administered by the researcher to both the experimental and control groups involved for about four weeks. Permission to record behavior was obtained from the participants and their privacy was ensured as the groups' identities were coded using letters (G1, G2).

Semi-structured Interviews:

Semi-structured interviews were employed to comprehensively understand students' engagement and this instrument was validated by three experts in the instructional and learning technology department and a psychology expert from Sultan Qaboos University (SQU). Then the questions were then modified based on their feedback. The semi-structured interview has three questions: the first two were directed to both teachers to assess students' emotional and cognitive engagement whereas the third question, concentrating on how well the tool increased student participation, was directed to the experimental group's teacher, who employed the Curipod tool in her class.

Semi-structured interviews were conducted with the two instructors responsible for teaching the experimental and control classes. Their input provided additional qualitative data as they played a significant role in implementing the Curipod tool during the study. The interviews were carried out face-to-face and typically took from 25 to 30

minutes each. The participants' permission to record the interviews was obtained to ensure their privacy and their identities were coded using the letters (T1, T2).

The trustworthiness of the interview questions aligns with the criteria for qualitative research as specified by Forero et al. (2018), specifically credibility criteria (Member check and Peer briefing). First, the interviews' findings were delivered to the participants for review and validation to confirm the accuracy and authenticity of the collected data (Member check). Then, the researcher discussed the interview process and findings with English teachers, experts in the field and supervisors to gain additional insights and perspectives (Peer briefing).

Data Analysis for Quantitative and Qualitative Data:

The study's mixed research approach involves using an achievement test (pre- and post-test), observation checklist and semi-structured interviews to collect quantitative and qualitative data. The data gathered from the pre- and post-test addresses the first research question while the information gathered from the observation checklist and interviews addresses the second research question. These two sets of data complement each other and support the conclusions drawn from the research intervention which involved using Curipod in the learning process.

The achievement test was analyzed by descriptive statistics using SPSS software, such as means and standard deviations, to address the first research question. Following the intervention, an independent sample t-test was applied to see whether there were any significant differences in the achievement test scores of the two groups, control and experimental.

Observation checklist was analyzed using deductive thematic analysis to manually evaluate the data using pre-existing themes or codes drawn from previous literature as a lens to explain data in a "top-down" approach (Ho & Limpaecher, 2024). This study employed pre-existing themes and codes which the researcher selected from previous studies and then modified and refined to suit the study's nature. The themes include emotional and cognitive engagement, and each one contains several indicators adapted to measure students' engagement (see Table 2). Then, data collected was categorized according to these themes and the validation was gained. Next, the checklist was administered to the target audience, and the data was documented and coded according to the pre-established themes and indicators.

The semi-structured Interviews transcripts were manually analyzed employing inductive thematic analysis. It is a "bottom-up" method that focuses on starting with the dataset as the foundation of investigating and deriving meaning (Ho & Limpaecher, 2024). Initially, the interviews were recorded, transcribed and then a script for each interview was developed. Codes were then assigned to capture the content and identify patterns and themes. The interview questions were analyzed according to the identified themes.

Research Procedures:

The school made all the necessary preparations to conduct the study providing a computer laboratory which was well-stocked with sufficient computer devices and supported by a good internet connection. Moreover, the school's administration and teachers were supportive of introducing the study and collaborated actively during its implementation. The researcher's role was to observe the classes and data collection process. The study's procedure included the following steps:

1. Reviewing previous research and works connected to the topic.
2. Selecting the suitable AI tool for the study and identifying the school, course content and class.
3. Addressing all logistic matters such as obtaining formal approval from the ILT department and the Ministry of Education.
4. Randomly assigning two classes to either the experimental group or the control group.
5. Preparing the activities and e-lessons in the Curipod educational platform for the experimental group.
6. Developing the study tools including: an English achievement test, an observation checklist and interview questions, and then validating them by experts.
7. Administering the pretest to both groups.
8. Conducting the experiment by applying the activities and content developed using the Curipod tool to the experimental group over eight weeks during the second semester of the 2023/2024 academic year.
9. Administering the posttest to the study groups.
10. Implementing the observation checklist and semi-structured interviews with the study participants.
11. Correcting and tabulating data, drawing conclusions, interpretation and discussion.
12. Formulating recommendations and suggestions according to the results of the study.

FINDINGS

The study's mixed-method approach provides comprehensive results concerning the effect of the AI-generative tool (Curipod) on fourth-grade students' English vocabulary acquisition and their classroom engagement. Regarding the first RQ, the results indicate that students who applied the Curipod tool during the learning process improved their English vocabulary more than those who did not. Table 3 shows that there was no significant difference in mean pretest scores between the control group ($M = 3.06$; $SD = 1.81$) and experimental group ($M = 2.57$; $SD = 1.57$) before the intervention, ($t(60) = 1.15$, $p > .05$). The p-value is 0.26 ($p > .05$).

Table 3: Independent Samples T-test Results for Pre-test

Groups	n	Mean*	SD	Df	t-value	p-value
Control group	32	3.06	1.81	60	1.15	0.26
Experimental group	30	2.57	1.57			

*Total score=10

On the other hand, Table 4 demonstrates a statistically significant difference between the post-test mean scores of the experimental group ($M = 8.00$; $SD = 1.76$) and the control group ($M = 6.47$; $SD = 1.87$), ($t(60) = 3.32$, $p = 0.002 < .05$) in favor of the experimental group.

Table 4: Independent Samples T-test Results for Post-test

Groups	n	Mean*	SD	Df	t-value	p-value
Control group	32	6.47	1.87	60	3.32	0.002
Experimental group	30	8.00	1.76			

*Total score=10

The findings for the second RQ reveal that students who utilized the Curipod tool showed a high degree of engagement in both domains (cognitive and emotional) as highlighted by the observation checklist and semi-structured interviews. Students in the experimental group exhibited higher levels of interest and motivation and perceived usefulness compared to the control group. The teacher of the experimental group stated, "*I've noticed a significant increase in students' active participation, enthusiasm, and motivation when interacting with the platform...*" They also showed high levels of attention and actively applied perceived knowledge to solve difficult questions. Conversely, students in the control group felt bored and unmotivated by the learning materials presented to them. A student from the control group said, "*We get bored with this type of activities, and it does not stimulate my motivation to learn. We want the class to be more enjoyable...*"

Furthermore, sense of connection and belonging to the learning community play a crucial role in shaping students' engagement. For instance, students who had access to Curipod worked together, shared ideas and supported each other in solving challenges. In contrast, students in the control group showed various levels of engagement as some exhibited strong sense of belonging to the learning process whereas others preferred to work alone. In the interview, the teacher of the control group confirmed that not all students demonstrate the same level of interaction in the classroom setting.

It was also noticed that the content and activities developed using the Curipod tool offered the students opportunities to apply critical thinking skills and cooperate with peers during task completion. However, in the control group, some students applied their higher order thinking skills and sought meaning from their peers when answering challenging questions while others showed difficulties in employing knowledge and hesitated to participate in group work activities.

Experimental group students actively sought help from the instructor and their peers. Their teacher confirmed, "*When engaging in collaborative content and activities, students seek help from both the instructor and their peers when they can't understand a concept taught in the class...*" This can be attributed to the atmosphere of enjoyment and enthusiasm promoted by the Curipod tool that encouraged them to seek support. On the other hand, students in the control group could not communicate with their peers and the teacher as their teacher said, "*some students may hesitate to ask their peers for help when they encounter difficulties understanding a concept taught in class. Similarly, they may not want to communicate with the instructor privately for extra assistance...*"

Overall, the observations and interviews' results clarify the quantitative outcomes of the experimental group showing notable improvement in vocabulary and that the active engagement with the content and activities enabled a deeper understanding of the content. Thus, using the Curipod tool encouraged students to actively

engage with the content and activities, apply critical thinking skills, seek clarification and communicate with their peers.

Summary of the Main Findings:

This study explores the effect of the AI-generative tool (Curipod) on improving vocabulary acquisition and increasing the engagement of Omani fourth-grade students in English classes. The main findings of this study are as follows:

- The results of the pre- and post-test propose that students using the Curipod tool during the learning process exhibited significant improvement in their English vocabulary than the group that did not apply the tool.
- Students who utilized the Curipod tool displayed high levels of engagement across all dimensions as highlighted by the observation checklist and semi-structured interviews.

DISCUSSION

Discussion of the First Research Question:

The first research question was, "Are there any statistical differences in the fourth-grade students' English vocabulary between the experimental group and control group? The results indicate statistically significant differences between the experimental group's and the control group's mean scores on the post-test in favor of the experimental group. This could be attributed to the activities and content developed by the Curipod tool which created an atmosphere of excitement and enjoyment for the students. This environment motivates students to ask questions, clarify concepts and seek assistance from their teacher and peers, potentially leading to boost their academic performance.

This finding aligns with previous studies results (Liao, 2023; Oktadela et al., 2023; Qasem et al., 2023) confirming that implementing various AI tools in English vocabulary instruction has a positive impact on students' English vocabulary acquisition. The mentioned studies, discussed above in the literature section, share similarities with the current research in terms of contextual focus, application of AI tools for vocabulary enhancement and the research instruments employed. Thus, AI-generative learning platforms such as the Curipod tool can improve the students' vocabulary comprehension ability by providing an anxiety-free learning environment, a self-regulation learning process, more engagement in the target language and extensive practice.

Discussion of the Second Research Question:

The second research question was "What is the impact of the AI-generative tool (Curipod) on the engagement of Omani 4th grade students in English classes?". The findings of observation checklist and semi-structured interviews reveal a noticeable level of engagement observed across both emotional and cognitive dimensions concerning using the Curipod tool. This can be attributed to the effectiveness of the content and activities developed through the Curipod tool that stimulates students' engagement in the classroom setting.

These findings are consistent with the outcomes of several studies such as Heilporn et al. (2021) indicating that combination of well-structured courses, clear communication, digital tools and carefully selected activities can boost students' engagement in blended learning. Morris and Parker (2014) claim that instructional technology could improve student motivation, performance, connection and pleasure. Serrano et al. (2019) declare that educational technologies could have prospects for creating and distributing instructional materials which could augment student involvement in behavioral, affective and cognitive domains. Bedenlier et al. (2020) assert that technologies like blogs, mobile learning and evaluation tools encourage participation. Similarly, research by Pechenkina et al. (2017) and Eltahir et al. (2021) point out that applying games-based learning positively affect students' academic performance, motivation and engagement.

On the other hand, the findings of the observation checklist and semi-structured interviews addressing the second question contradict with the findings stated by Salta et al. (2021) and Aguilera-Hermida (2020) which identify a decline in students' emotional involvement and cognitive engagement in online learning during the COVID-19 pandemic. Furthermore, Alawamleh et al. (2020) recognize a decrease in the degree of communication in online learning between instructors and students during the pandemic. These contradictions could be explained by a number of factors. Firstly, study populations and context variations may lead to different experiences and outcomes. Secondly, methodological differences, such as the tools and measures employed for assessment, could yield contrasting results. Finally, temporal differences and evolving circumstances during the pandemic could also account for discrepancies as educational practices and student's experiences may have varied over time and across different pandemic phases.

CONCLUSION

This study intends to evaluate the effectiveness of an AI-generative tool (Curipod) in improving vocabulary acquisition and engagement of Omani 4th grade students in English classes. Data was collected using three instruments: (1) an English achievement test (Pre-Posttest), (2) an observation checklist and (3) semi-structured interviews. The findings of this study demonstrate that students in experimental group, who utilized the Curipod tool, showed a significant development in English vocabulary and displayed a higher degree of engagement in the emotional and cognitive domains compared to students in the control group. Consequently, the study concludes that AI-generative tools such as Curipod not only improve vocabulary acquisition but also create a more interactive and engaged environment.

Overall, integrating AI-generative tools, such as Curipod, holds promising potential for enhancing English language learning outcomes and promoting students' engagement among fourth-grade Omani students. Future research can benefit from this study's results as a guide for further exploration of the effectiveness of AI tools in teaching languages.

SUGGESTIONS

In consideration of the study's findings, the following suggestions are recommended:

- Educators and policymakers should explore incorporating AI-driven tools such as Curipod into English language education throughout schools in Oman. This incorporation can enhance students' vocabulary acquisition and boost overall academic accomplishments.
- Teachers should be provided with training and professional development programs to proficiently integrate AI tools into their teaching approaches. This training is crucial for educators to optimize the advantages of technology within classroom settings and promote students' engagement.
- Curriculum developers should investigate methods to integrate AI-powered educational technologies into the curriculum offering students interactive and personalized learning experiences.
- Continuous evaluation and assessment of AI tools' effectiveness in language learning contexts are crucial. Therefore, researchers should conduct longitudinal studies to gauge the long-term effects of incorporating Curipod and similar technologies on students' language proficiency and academic achievements.
- Policymakers need to allocate resources to ensure that schools have access to AI-driven educational technologies, promoting equitable access across various regions. This action aims to narrow the digital gap and ensure all students receive quality education.
- Establishing a robust team comprising researchers, educators, policymakers and technology developers is vital to effectively incorporate AI tools into education. Such teams can help develop innovative tools and strategies that benefit teachers and students.

LIMITATIONS

The main limitations of this study are as follows:

- Sample Size and Generalizability: The study's limited sample size could compromise its ability to generalize the results to a larger population, potentially making them not fully representative of all students or diverse educational contexts.
- Measurement of Engagement: The observation checklist deployed to assess the students' engagement may not fully encompass all dimensions of engagement that could influence the study's results.

REFERENCES

Alawamleh, M., Al-Twait, L., & Al-Saht, G. (2020). The effect of online learning on communication between instructors and students during the COVID-19 pandemic. *Asian Education and Development Studies*, 11(2), 380–400. <https://doi.org/10.1108/AEDS-06-2020-0131>

Al-Humaidi, S., Al-Khanbshiyya, N. A., Al Seyabi, F. A., & Omara, E. (2021). Stakeholders' perceptions of the factors contributing to the low English vocabulary level among Omani post-basic education students [Unpublished master's thesis]. Sultan Qaboos University.

Al-Saeedi, M. A., Al-Buraiki, M. R., Al-Balushi, A. R. F. A., Al-Kharousi, H. A., & Al-Kahali, K. S. (2017). The effect of e-learning in teaching mathematics on academic achievement and the trend towards the subject of the fifth-grade students of basic education in the Sultanate of Oman. *Specialized International Educational Magazine*, 6(4), 227–239. <https://doi.org/10.36752/1764-006-004-017>

Aguilera-Hermida, A. P. (2020). College students' use and acceptance of emergency online learning due to COVID-19. *International Journal of Educational Research Open*, 1, Article 100011. <https://doi.org/10.1016/j.ijedro.2020.100011>

Bedenlier, S., Bond, M., Buntins, K., Zawacki-Richter, O., & Kerres, M. (2020). Facilitating student engagement through educational technology in higher education: A systematic review in the field of

arts and humanities. *Australasian Journal of Educational Technology*, 36(4), 126–150. <https://doi.org/10.14742/ajet.5477>

Cevikbas, M., & Kaiser, G. (2021). Student engagement in a flipped secondary mathematics classroom. *International Journal of Science and Mathematics Education*, 20(7), 1455–1480. <https://doi.org/10.1007/s10763-021-10213-x>

Concepcion, A. U., & Espino, J. D. (2023). Personalize learning management system platform using artificial intelligence rule-based technique. *Iconic Research and Engineering Journals*, 6(11), 108–115. <https://bit.ly/3VfF4JL>

Cooper, H., Robinson, J. C., & Pattall, E. A. (2006). Does homework improve academic achievement? A synthesis of research, 1987–2003. *Review of Educational Research*, 76(1), 1–62. <https://doi.org/10.3102/00346543076001001>

Dewi, H. K., Putri, R. E., Rahim, N. A., Wardani, T. I., & Pandin, M. G. R. (2021). The use of AI (artificial intelligence) in English learning among university students: Case study in English department, Universitas Airlangga. *SocArXiv*. <https://doi.org/10.31235/osf.io/x3qr6>

Eltahir, M. E., Alsalhi, N. R., Al-Qatawneh, S., AlQudah, H. A., & Jaradat, M. (2021). The impact of game-based learning (GBL) on students' motivation, engagement and academic performance on an Arabic language grammar course in higher education. *Education and Information Technologies*, 26(3), 3251–3278. <https://doi.org/10.1007/s10639-020-10396-w>

Firat, M. (2023). Integrating AI applications into learning management systems to enhance e-learning. *Instructional Technology and Lifelong Learning*, 4(1), 1–14. <https://doi.org/10.52911/itall.1244453>

Forero, R., Nahidi, S., De Costa, J., Mohsin, M., Fitzgerald, G., Gibson, N., McCarthy, S., & Aboagye-Sarfo, P. (2018). Application of four-dimension criteria to assess rigour of qualitative research in emergency medicine. *BMC Health Services Research*, 18(1), Article 291. <https://doi.org/10.1186/s12913-018-2915-2>

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. *Review of Educational Research*, 74(1), 59–109. <https://doi.org/10.3102/00346543074001059>

Gager, A. (2018, June 26). Efficiency and effectiveness: Know the difference. *FacilitiesNet*. <https://bit.ly/44Hg6Xx>

Grubaugh, S., Levitt, G., & Deever, D. (2023). Harnessing AI to power constructivist learning: An evolution in educational methodologies. *EIKI Journal of Effective Teaching Methods*, 1(3), 81–83. <https://doi.org/10.59652/jetm.v1i3.43>

Guba, E. G. (1981). Criteria for assessing the trustworthiness of naturalistic inquiries. *Educational Communication and Technology Journal*, 29(2), 75–91. <https://doi.org/10.1007/BF02766777>

Heilporn, G., Lakhal, S., & Bélisle, M. (2021). An examination of teachers' strategies to foster student engagement in blended learning in higher education. *International Journal of Educational Technology in Higher Education*, 18(1), Article 18. <https://doi.org/10.1186/s41239-021-00260-3>

Ho, L., & Limpacher, A. (2024, March 1). Inductive thematic analysis and deductive thematic analysis in qualitative research. *Delve*. <https://delvetool.com/blog/inductive-deductive-thematic-analysis>

Jabbar Alkubaisi, G. A. A., Al-Saifi, N. S., Al-Shidi, A. R., & Al-Shukaili, Z. S. (2021). The quality of selected online learning platforms and their effect on education in the Sultanate of Oman. *Education Research International*, 2021, 1–11. <https://doi.org/10.1155/2021/2570377>

Jackson, E. A. (2024). The evolution of artificial intelligence: A theoretical review of its impact on teaching and learning in the digital age. *ECONSTOR*, 1–14. <https://hdl.handle.net/10419/280893>

Jiang, R. (2022). How does artificial intelligence empower EFL teaching and learning nowadays? A review on artificial intelligence in the EFL context. *Frontiers in Psychology*, 13, Article 1049401. <https://doi.org/10.3389/fpsyg.2022.1049401>

Kashoob, M., & Attamimi, R. (2021). Exploring Omani EFL students' perceptions of the newly adopted online learning platforms at the University of Technology and Applied Sciences-Salalah. *Journal of Education and Learning*, 10(2), 28–36. <https://doi.org/10.5539/jel.v10n2p28>

Kazu, I. Y., & Kuvvetli, M. (2023). The influence of pronunciation education via artificial intelligence technology on vocabulary acquisition in learning English. *International Journal of Psychology and Educational Studies*, 10(2), 480–493. <https://doi.org/10.52380/ijpes.2023.10.2.1044>

Lee, J., Song, H.-D., & Hong, A. (2019). Exploring factors and indicators for measuring students' sustainable engagement in e-learning. *Sustainability*, 11(4), 985. <https://doi.org/10.3390/su11040985>

Liao, L. (2023). Artificial intelligence-based English vocabulary test research on cognitive web services platforms: User retrieval behavior of English mobile learning. *International Journal of e-Collaboration*, 19(2), 1–19. <https://doi.org/10.4018/ijec.316656>

Morris, R. C., & Parker, L. C. (2014). Examining the connection between classroom technology and student engagement. *Journal of Teaching and Learning with Technology*, 3(1), 1–15. <https://doi.org/10.14434/jotlt.v3n1.4720>

Noviyanti, S. D. (2020). Artificial intelligence (AI)-based pronunciation checker: An alternative for independent learning in pandemic situation. *Journal of English Language Teaching in Foreign Language Context*, 5(2), 162–169. <https://doi.org/10.24235/eltecho.v5i2.7246>

Oktadela, R., Elida, Y., & Ismail, S. (2023). Improving English vocabulary through artificial intelligence (AI) chatbot application. *Journal of English Language and Education*, 8(2), 63–67. <https://doi.org/10.31004/jele.v8i2.411>

Pechenkina, E., Laurence, D., Oates, G., Eldridge, D., & Hunter, D. (2017). Using a gamified mobile app to increase student engagement, retention and academic achievement. *International Journal of Educational Technology in Higher Education*, 14(1), Article 31. <https://doi.org/10.1186/s41239-017-0069-7>

Polyzi, P., & Moussiades, L. (2023). An artificial vocabulary learning assistant. *Education and Information Technologies*, 28(12), 16431–16455. <https://doi.org/10.1007/s10639-023-11810-9>

Qasem, F., Ghaleb, M., Mahdi, H. S., Khateeb, A. A. A., & Fadda, H. A. (2023). Dialog chatbot as an interactive online tool in enhancing ESP vocabulary learning. *Saudi Journal of Language Studies*, 3(2), 76–86. [https://doi.org/10.1108/SJLS-10-2022-0072 emerald.com](https://doi.org/10.1108/SJLS-10-2022-0072)

Salta, K., Paschalidou, K., Tsetseri, M., & Koulougliotis, D. (2022). Shift from a traditional to a distance learning environment during the COVID-19 pandemic. *Science & Education*, 31(1), 93–122. [https://doi.org/10.1007/s11191-021-00234-x link.springer.com](https://doi.org/10.1007/s11191-021-00234-x)

Sbardella, T., & Montanucci, G. (2024). Curipod: A tool for creating and delivering AI-enhanced lessons. *LT*, 33–35. [https://hdl.handle.net/20.500.12071/39472 ricerca.unistrapg.it](https://hdl.handle.net/20.500.12071/39472)

Serrano, D. R., Dea-Ayuela, M. A., Gonzalez-Burgos, E., Serrano-Gil, A., & Lalatsa, A. (2019). Technology-enhanced learning in higher education: How to enhance student engagement through blended learning. *European Journal of Education*, 54(2), 273–286. [https://doi.org/10.1111/ejed.12330 onlinelibrary.wiley.comstrathprints.strath.ac.uk](https://doi.org/10.1111/ejed.12330)

Thongprasit, J., & Wannapiroon, P. (2022). Framework of artificial intelligence learning platform for education. *International Education Studies*, 15(1), 76–86. [https://doi.org/10.5539/ies.v15n1p76 ccsenet.org](https://doi.org/10.5539/ies.v15n1p76)

Zaabanoor, A. M. (2021). An investigation of the student engagement in the ILT department online courses during the COVID-19 pandemic [Unpublished master's thesis]. Sultan Qaboos University. <http://search.mandumah.com/Record/1363962>

Zhang, Z., & Huang, X. (2024). The impact of chatbots based on large language models on second language vocabulary acquisition. *Heliyon*, 10(3), e25370. [https://doi.org/10.1016/j.heliyon.2024.e25370 sciencedirect.com](https://doi.org/10.1016/j.heliyon.2024.e25370)

Hong Kong Students' Perception of Providing Students with Digital Learning Materials Improves Learning Experience

Hon Keung YAU

*City University of Hong Kong, Department of Systems Engineering, Kowloon Tong, Kowloon, Hong Kong.
honkyau@cityu.edu.hk*

Wai Keung CHIU

*City University of Hong Kong, Department of Systems Engineering, Kowloon Tong, Kowloon, Hong Kong.
waikichiu7-c@my.cityu.edu.hk*

Yu Jin CHEAH

*City University of Hong Kong, Department of Systems Engineering, Kowloon Tong, Kowloon, Hong Kong.
yjcheah3-c@my.cityu.edu.hk*

Abstract

This paper explores the impact of digital learning materials on improving student learning experiences in Hong Kong after the COVID-19 pandemic. A survey of 121 respondents was conducted to study students' perceptions towards Digital Learning Materials (DLM). The Technology Acceptance Model (TAM) guided the questionnaire survey. After collecting data, it was analysed that age, gender and education level do not influence students' perception of DLM. However, grade differences in tertiary studies and other external factors strongly influence students' perceived ease of use (PEOU) and perceived usefulness (PU). Other factors among TAM were also found to influence one another.

Keywords: Digital Learning Model (DLM), Technology Acceptance Model (TAM), Hong Kong Education

1. Introduction

The rise of new teaching methods in the Hong Kong education system, such as online learning materials, has allowed students opportunities to study smoothly at home. However, many crises have been discovered, such as students' concentration, learning engagement, and understanding are different from past education. The study aims to investigate Hong Kong students' perception of providing Digital Learning Materials (DLM) and categorise them by education level, gender, age, experience and learning habits.

2. Literature Review

2.1 Digital Learning Material (DLM)

Digital Learning Material (DLM) is a digitised and designed material for educational purposes and can be accessed using a computer. It originates from the word Learning Material (LM), a material for educational purposes. DLM may include, but is not restricted to, the following contents:

1. Drill and Practice: Provides consolidation and repetition of knowledge, trains and automates skills. Can build the confidence of learners through scores and results.
2. Tutorial: Provides predefined programs for learners to build up knowledge and skills. Relates to the knowledge application method or procedure.
3. Multimedia: Contains multiple types of material composition, such as text, images, sound, video and interactivity. It can be divided into linear content, which does not require the learner to control, and non-linear content, which controls progress by learner interactivity.
4. Simulations: Model of a system. Provide operations under different variables, allow changing values and understand the impacts of variables. Reduce dangerous or time-consuming situations while maintaining high-quality simulations.
5. Educational Games: Enhance interest in teaching content and motivate learners through diversified game content.
6. Autonomous Learning: Learners are responsible for their own learning. Learners must establish and implement personal education plans and make decisions based on needs, preferences or goals. Learning attitudes are important, and are expected to learn consciously and actively.

2.2 Measure of Students' Perceptions on DLM

2.2.1 Theory of Planned Behaviour (TPB)

Theory of Planned Behaviour (TPB) is developed based on Theory of Reasoned Action (TRA) (Fishbein & Ajzen, 1975), which demonstrates the evaluation of behaviour (attitude), perception of surrounding wanting the occurrence of a behaviour (subjective norms). It positively affects the behavioural intention, the main predictor of behaviour, through a behavioural decision model by Ajzen (1991). TPB assumes that human beings are rational and systematically use information available to them. (Ajzen & Fishbein, 1980) It also includes "perceived behavioural control", an extra component that refers to people's perception of difficulty in performing behaviour of interest (Ajzen, 1991). Atkinson's Theory of Achievement Motivation (1964) also points out that expectancy of success has "incentive value" to improve the behavioural intention.

2.2.2 Technology Acceptance Model (TAM)

The Technology Acceptance Model (TAM) is proposed as an information systems theory (Davis, 1989) and a model grounded in social psychology theory and TRA. While TRA points out that beliefs influence attitudes, TAM points out that a system is a response through the reasoning of user motivations, external stimulus of the system's features and capabilities. (Davis, 1985) The original TAM includes the perceived usefulness (PU), perceived ease of use (PEOU), Behavioural Intention (BI) and Student Attitude (ATT). Studies such as Adams et al. (1992), Davis (1985, 1989), and Taylor & Todd (1995) extend the TAM to include gender and age.

2.2.3 Perceived Usefulness (PU) and Perceived Ease of Use (PEOU)

Perceived Usefulness (PU) refers to the degree to which an individual believes a particular system would enhance job performance. On the other hand, Perceived Ease of Use (PEOU) refers to the degree to which an individual believes that using a particular system would be free of physical and mental effort. (Davis, 1989) Both are important in predicting a person's behaviour, especially PEOU, which predicts innovation adoption and system usage behaviour through beliefs of the efforts required to use a system. (Davis, 1985)

2.2.4 Technology Factors (TF)

Technology Factors (TF) represent student satisfaction with technology and the information quality of DLM. It includes the interface and system characteristics to assess the system's ability to address the business needs and the degree to which technology meets performance. (Dishaw & Strong, 1999; Delone & McLean, 2003; Wixom & Todd, 2005; Seddon, 1997) It emphasizes learning distinct knowledge and new technologies of computers and networks, with digital tools to promote the ability to use information technology. (Shin et al., 2011) High quality also improves users' ability to use technology, resulting in convenience and a boost in performance.

2.2.5 Student Factors (SF)

Student Factors (SF) refers to the technology experience satisfaction and eagerness to use it. Breckler and Wiggins (1991) defined attitude as "acquiring and enduring non-verbal features of the social and physical world through experience, exerting a direct influence on behaviours". Students' attitudes, such as eagerness and satisfaction, are based on experience and can trigger a positive perception of systems' value. (Baki et al., 2018) It also suggests that the enjoyable experience of the platform will influence the students. (Zhou et al., 2022)

2.2.6 Teacher Factors (TeacherF)

Teachers' attitudes towards DLM influence students' satisfaction through timely response, assistance to encourage continued learning when facing problems or trouble. (Arbaugh, 2002; Thurmond et al., 2002) The instructor also plays a significant role in explaining knowledge and theories in DLM through appropriate instructional media. Their ideas will be transmitted with optimization results. (Yang et al., 2014) Hong et al. (2021) also showed that teachers are more inclined toward education technology. Therefore, the attitudes towards DLM can be an important measurement indicator.

2.3 Research Hypotheses

The following hypotheses are presented to demonstrate the relationships between different variables as guided by frameworks and designs:

2.3.1 Gender Difference

Research indicates that males are more likely to be more advanced, capable and interested in handling high-level ICT skills or computer-related activities than females. (Broos, 2005; Dumont et al, 2010; Arnseth, 2006) As males are more confident in using computers than females (Keller, 2010), males are more likely to believe that they can handle DLM more easily than females (PEOU), leading them to have a greater chance of performing better than females (PU).

H1: PU of DLM is different between genders

H2: PEOU of DLM is different between genders

2.3.2 Age Difference

Age is an important demographic variable in behavioural intention, adoption and acceptance of technology (Chung et al, 2010; Porter & Donthu, 2006; King & He, 2006). It is believed that senior students have more experience in using technology, thus influencing their ability to learn a new software application (Morris & Venkatesh, 2000).

H3: Age has a positive effect on PU of DLM

H4: Age has a positive effect on PEOU of DLM

2.3.3 Education Level Difference

Education level affects the relationship between main determinants and behavioural intention (Burton-Jones & Hubona, 2006). It affects the individual's knowledge and skill, thus affecting the behavioural beliefs (PU and PEOU) towards acceptance and usage of new technologies (Rogers, 2003; Agrawal & Prasad, 1999).

H5: Education level has a positive effect on PU of DLM

H6: Education level has a positive effect on PEOU of DLM

H7: Higher grade in tertiary education has a positive effect on PU of DLM

H8: Higher grade in tertiary education has a positive effect on PEOU of DLM

2.3.4 Technology Factors (TF)

As mentioned on 2.2.4, the system or information quality addresses the business needs of higher technology quality to improve students' work performance (Dishaw & Strong, 1999; Delone & McLean, 2003; Wixom & Todd, 2005; Seddon, 1997).

H9: TF has a positive effect on PU of DLM

H10: TF has a positive effect on PEOU of DLM

2.3.5 Student Factors (SF)

Satisfaction with experience and eagerness to use technology enhances confidence and creates a positive attitude in using DLM. It relieves stress and eases the process of using DLM.

H11: SF has a positive effect on PU of DLM

H12: SF has a positive effect on PEOU of DLM

2.3.6 Teacher Factors (TeacherF)

Teachers having a positive attitude toward DLM will provide more assistance to students, reducing students' perceived difficulty in using DLM.

H13: TeacherF has a positive effect on PU of DLM

H14: TeacherF has a positive effect on PEOU of DLM

2.3.7 TAM Variables

TAM, which serves as a baseline model to guide the study, shows the relationship between PU, PEOU, BI and ATT. It is considered the most influential and commonly employed theory for describing an individual's acceptance of information. As explained in 2.2.3, PU and PEOU refer to different degrees of student beliefs. PEOU is believed to show a statistically positive effect on PU. (Han & Sa, 2021) BI refers to the actual use of DLM, thus determining DLM acceptance, while ATT refers to students' attitude toward DLM usage. Higher PEOU influences student thoughts on DLM, increases efficiency and saves time in student perceivedness, thus enhancing student engagement with DLM. Beliefs about system-enhancing job performance allow the activeness of DLM usage. It also persuades students to put in effort, affecting PEOU.

H15: PEOU has a positive effect on PU of DLM

H16: PEOU has a positive effect on ATT of DLM

H17: PU has a positive effect on ATT of DLM

H18: PU has a positive effect on BI of DLM

H19: ATT has a positive effect on BI of DLM

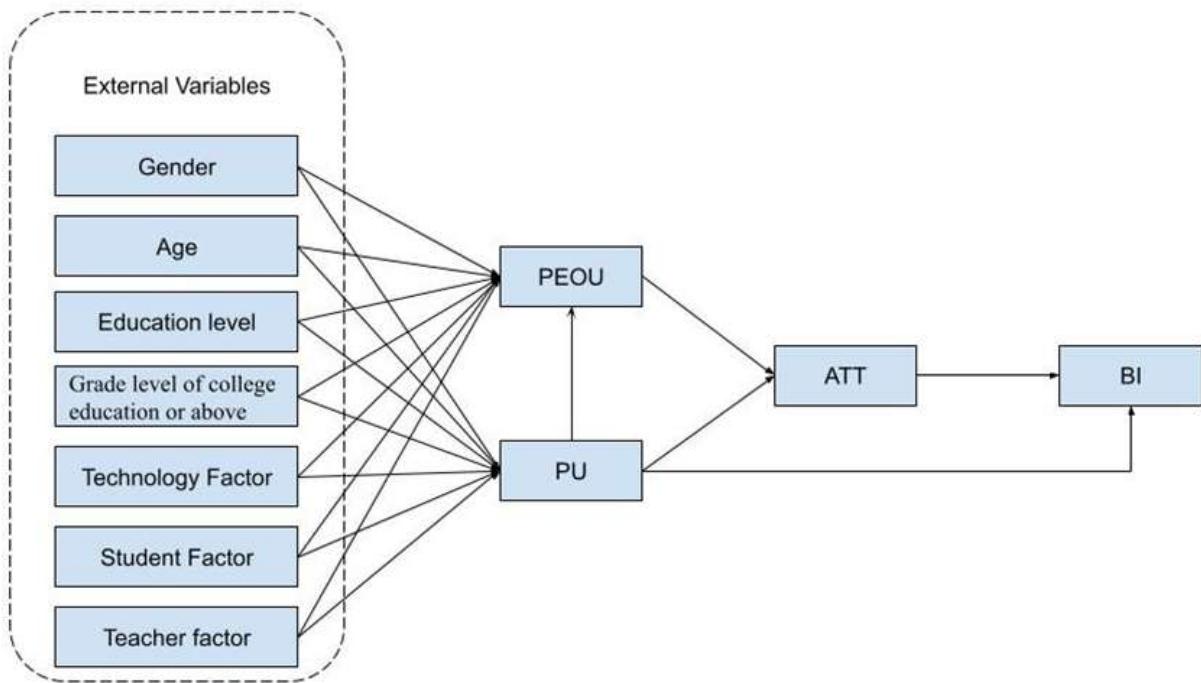


Fig 2.3.7: Research Model of Students' Perception in DLM in Hong Kong

3. Methodology

3.1 Research Design

Data is collected through Web Questionnaire Surveys to evaluate Hong Kong students' perception of providing DLM. The survey is based on a large first-year Health Science course (Daniel & Bird, 2019), which collects data on interviewees' digital content, teaching methods, and students' participation in content, peers and lecturers. This method allows extensive data collection in a short period of time for analysis. The questionnaire is distributed and collected from different respondents through the Internet.

The study consists of 5 main stages:

1. Planning – Identify the target population
2. Sampling – Determine the study sample of the target population
3. Questionnaire Survey Design – Design and develop the questionnaire survey
4. Questionnaire Survey Distribution – Distribute the survey, then collect the results and administer the survey
5. Data Analysis – Use the collected survey data to conduct an analysis and report the results

3.2 Advantages and Disadvantages of Web Questionnaire Surveys

Web Questionnaire Surveys have advantages over other data-collection methods, such as interviews (Bowling, 2002; Denscombe, 2003). It allows the researcher to:

1. Collect large and diverse data by reaching various individuals, including hard-to-reach samples. Collected data can be categorised by interests, attitudes, beliefs and values.
2. Protect both the researcher's and participants' personal safety as the research is conducted during the COVID-19 pandemic.
3. Increase anonymity, especially when raising sensitive issues, which increases data reliability and respondents' sense of security.
4. Reduce time to collect data from respondents.
5. Provide participants with flexibility, such as the venue and time period, when filling out the questionnaire.
6. Reducing the cost of paper, printing and postage.

However, there are also disadvantages to Web Questionnaire Surveys. The following addressed them with overcoming methods:

1. Lack of interactivity compared to face-to-face or telephone surveys, as it is based on textual questions. No immediate responses from the researcher to the respondents led to different respondents having

different interpretations of the same question, making the results subjective due to misunderstanding or confusion of the questions. Simple wording and questions are used to overcome such problems.

2. Unable to observe facial expressions, body language or tone of voice, resulting in losing valuable data such as emotions and other subtle features. To overcome such problems, Likert scale questions are used to collect emotion data through a scale from “absolutely agree” to “absolutely disagree”, providing a larger scope for trend analysis.

3.3 Questionnaire Survey Design

The questionnaire survey is split into 3 parts:

1. Respondent Characteristics – Inquire personal information such as education level, gender, age and usage of DLM in their course. It allows researchers to understand and distinguish situations or control factors.
2. Student Habits in DLM – Collect and compare DLM habits of different respondents, including the number and time of DLM usage and the type of LM provided in the course.
3. Students’ Perceptions and Behaviours of DLM – Collect TF, SF, TeacherF, PU, PEOU and BI using the Likert scale.

3.3 Distribution and Collection of Web Questionnaire Surveys

In the early stages of the research, 10 copies were distributed to peers and colleagues for feedback and opinions, such as word choice and design perception. It also serves as a proofreading process and a test run of the operational flow. Since the process is smooth, the research extended the sample to Hong Kong students from different academic qualifications and colleges through snowball sampling. The questionnaire survey was also distributed through social media such as Facebook, Instagram and X to prevent the echo chamber effect and eliminate the issue of paid survey participants. As the survey was not conducted for community purposes, the response rate achieved 85.21% with 142 questionnaires distributed.

3.4 Data Preparation and Analysis

Data management is conducted to check if the questionnaire is answered thoroughly and suitable to be used as an analysis sample. To ease the process, raw data was imported into Excel to facilitate data analysis. After data management, the Statistical Package for Social Science (SPSS) is used to analyse the data and the relationship between different causes. The following are the data analysed:

1. Data Validity – The degree to which the questionnaire surveys can measure the intended purpose through factor loading and item-total correlations between items.
2. Data Reliability – The consistency of the measure (questionnaire) represented by Cronbach’s Alpha (α). Calculated through the number of items and the average cross-correlation between items. Acceptable value is 0.7 (Fornell & Lacker, 1981)
3. Factor Analysis – The degree of the relationship between different groups of questions refers to factors, such as situation and IQ. Acceptable value is above 0.3 (Fornell & Lacker, 1981)
4. Independent-samples T-test – Comparing means of two independent data groups to determine the difference in related population means
5. One-way ANOVA – Use for determining the difference between the means of 3 or more independent groups
6. One-sample T Test – Use for comparing the variable mean and a hypothetical value to determine whether there is a relationship between two different variables (Allen, 2017)

3.5 Validation of Measurement Scale

3.5.1 Factor Analysis

The extractions of items during the factor loading of the measurement scale are above 0.3, while the corrected item-total correlation of the measurements is also bigger than 0.3. This indicates that all questionnaire items are sufficiently related to a given factor. Therefore, the data were reliable, and the items had a significant variance for factor analysis.

3.5.2 Component Analysis

Table 1: Component Analysis for Factors

Construct	Components Extracted	Variance Explained, % (Component 1, Component 2)
Technology Factors (TF)	1	50.888
Student Factors (SF)	1	49.760
Perceived Usefulness (PU)	1	68.907
Perceived Ease of Use (PEOU)	1	69.361
Attitude (ATT)	1	59.109
Behavioural Intention (BI)	1	56.856
Teacher Factors (TeacherF)	2	49.743, 18.706

Principal Component Analysis (PCA) validated the survey's measurements by identifying underlying components for each construct. A component is extracted from TF (50.89%), SF (49.76%), PU (68.91%), PEOU (69.36%), ATT (59.11%), and BI (56.86%). Two components are extracted from TeacherF (49.74% and 18.71% variance). Component 1 was prioritized as having higher variance explained, confirming scale suitability for future analysis.

3.5.3 Reliability Analysis

Table 2: Reliability Statistics for Factors

Item	Cronbach's Alpha	N of Items	Notes
Technology Factor (TF)	.839	7	All correlations > 0.3
Student Factor (SF)	.849	8	All correlations > 0.3
Perceived Usefulness (PU)	.885	5	All correlations > 0.3
Perceived Ease of Use (PEOU)	.887	5	All correlations > 0.3
Attitude (ATT)	.856	6	All correlations > 0.3
Behavioural Intention (BI)	.743	4	All correlations > 0.3
Teacher Factor (TeacherF)	.792	6	All correlations > 0.3

All factors have their Cronbach's Alpha higher than the acceptable value of 0.7 (Fornell & Lacker, 1981).

4. Analysis & Discussion

Data analysis is conducted based on 3.4, which follows the steps below:

1. Exound information and divide into subgroups based on part 1 in 3.3
2. Introduce descriptive statistics of the scale and summarized according to different factors
3. Conduct a sample t-test to compare the gender, education level and prior experience.
4. Conduct the one-way ANOVA to compare the gender and education level.
5. Analyse the Pearson correlation among factors
6. Discussion

4.1 Demographic Information

A total of 121 respondents answered 8 multiple-choice questions. All of the respondents indicated that they studied an education program in Hong Kong, and 99.2% of them indicated that their course had provided DLM. The following diagrams were the demographic background of the respondents:

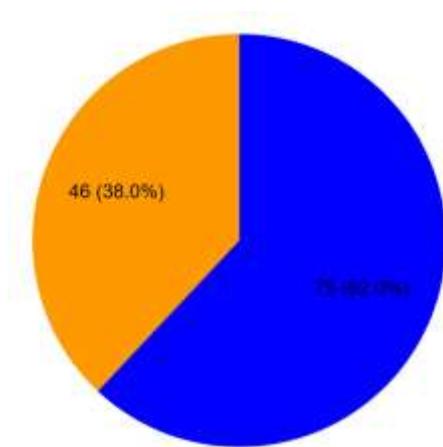


Figure 1: Respondents' Gender Distribution

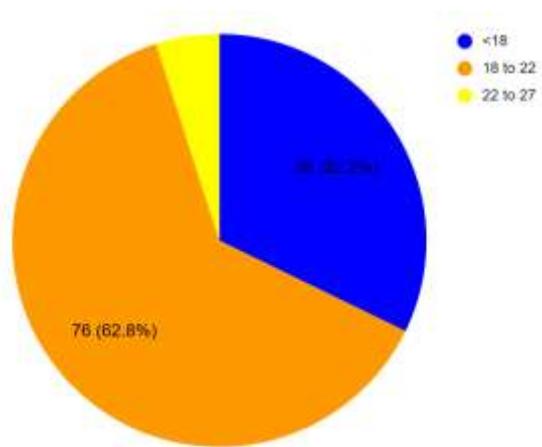


Figure 2: Respondents' Age Distribution

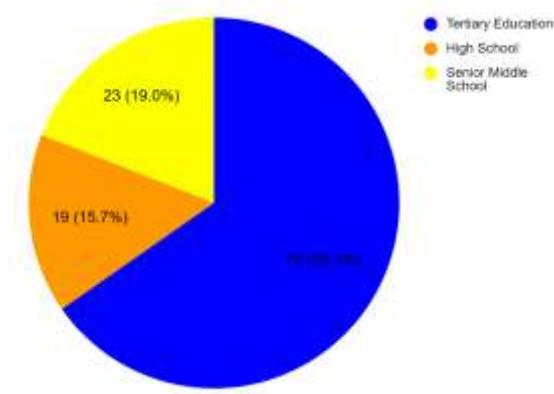


Figure 3: Respondents' Education Level Distribution

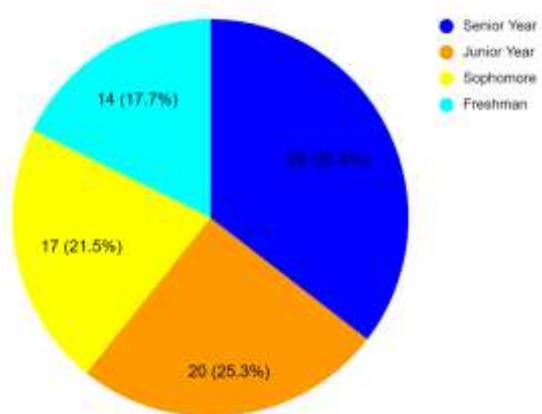


Figure 4: Tertiary Studies Distribution

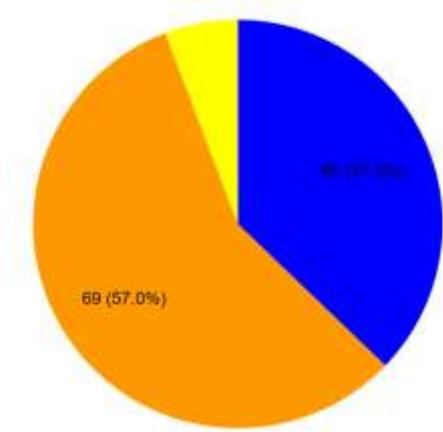


Figure 5: Respondents' Experience in using DLM

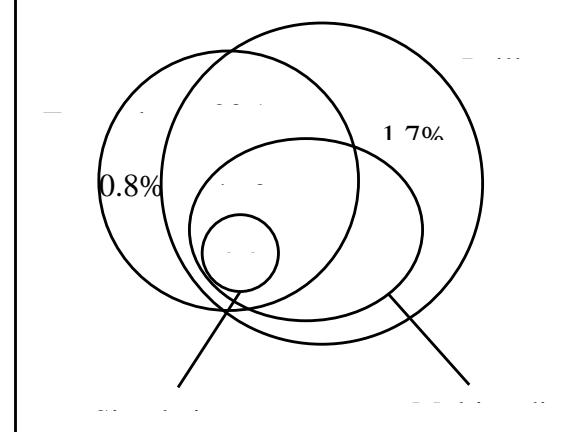


Figure 6: Venn Diagram of LM type

4.2 Descriptive Statistics

A total of 41 Likert scales (Questions 9 to 49) were provided. (1= absolutely disagree to 5= absolutely agree).

4.2.1 Technology Factors (TF)

From questions 9 to 15, TF was measured with a mean of 4.0850. This shows that respondents have a positive response to this factor, believing that DLM contains good technology and information quality. Among the questions, respondents highly identified that DLM helped record key points and make notes, as it has the highest mean.

4.2.2 Student Factors (SF)

From questions 16 to 23, SF was measured with a mean of 3.8523. This shows that respondents have a positive response to this factor, agreeing that they are satisfied and eager to use DLM. Among the questions, respondents felt DLM helped them in preparing lessons as it had the highest mean.

4.2.3 Perceived Usefulness (PU)

From questions 24 to 28, PU was measured with a mean of 4.0033. This shows that respondents have a positive response to this factor, presenting the belief that DLM enhanced respondents' performance. Among the questions, most respondents agreed that DLM enhanced their effectiveness in learning, as it had the highest mean.

4.2.4 Perceived Ease of Use (PEOU)

From questions 29 to 33, PEOU was measured with a mean of 4.2496. This shows that respondents have a positive response to this factor, being confident that DLM would be free from effort. Among the questions, respondents indicate that it is easy when learning to use technologies in DLM, as it has the highest mean.

4.2.5 Attitude (ATT)

From questions 34 to 39, ATT was measured with a mean of 4.0510. This shows that respondents have a positive response to this factor. Among the questions, most said that DLM has a positive impact on learning awareness, as it has the highest mean.

4.2.6 Behavioural Intention (BI)

From questions 40 to 43, BI was measured with a mean of 3.9318. This shows that respondents have a positive response to this factor, indicating that respondents are most likely using DLM. Among the questions, most respondents think that Hong Kong education should develop DLM as it has the highest mean.

4.2.7 Teacher Factors (TeacherF)

From questions 44 to 49, TeacherF was measured with a mean of 4.0000. This shows that respondents have a positive response to this factor, indicating that teachers use DLM in a good way. Among the questions, most respondents revealed that teachers will accept opinions when encountering difficulties in DLM, as it has the highest mean.

4.3 Independent Samples T-test

To find statistical significance, an independent samples T-test was used to compare related observations. It consists of 2 parts in the study:

1. Levene's Test for Equality of Variances – an inferential statistic used to assess whether the variances of two or more variables are equal. A p-value is observed (<0.05), and the null hypothesis is rejected as the probability of obtaining sample variances was low.
2. t-test for Equality of Means – Determine whether two different populations' means are equal. If the significance is less than or equal to 0.05, there is a significant difference between the two means.

4.3.1 Comparison of PU of DLM between Genders

Based on the items in 4.3, the values are 0.566 and 0.116, each value greater than 0.05. This indicates that the probability of obtaining differences in sample variances was high, and there is no significant difference in PU between different genders. Based on the results, hypothesis **H1: PU of DLM is different between genders** is rejected.

4.3.2 Comparison of PEOU of DLM between Genders

Based on the items in 4.3, the values are 0.451 and 0.122, each value greater than 0.05. This indicates that the probability of obtaining differences in sample variances was high, and there is no significant difference in PU between different genders. Based on the results, the hypothesis **H2: PEOU of DLM is different between genders** is rejected.

4.4 One-way ANOVA

Although one-way ANOVA cannot show which specific groups were statistically different, it is used to determine the significant difference between the means of two or more independent groups. If the p-value is less than 0.5, there is a significant difference in the mean of different groups, which will then require a follow-up by a post hoc test. The post hoc test is conducted to confirm where the differences occurred between groups. If the p-value of the post hoc test was less than 0.5, there is a significant difference between the two groups.

4.4.1 Comparison of Students' PU between Ages

The significance level of ANOVA was 0.105, representing no significant difference in PU of DLM for different age groups. All the age groups in the post hoc test have a significant level greater than 0.05, indicating that there is no significant difference in mean between age groups. The descriptive statistics also indicate no significant difference between age groups, concluding that there is no significant difference in different ages, considering the degree of improvement in work performance while using DLM. Based on the results, the hypothesis **H3: Age has a positive effect on PU of DLM** is rejected.

4.4.2 Comparison of Students' PEOU between Ages

The significance level of ANOVA was 0.336, representing no significant difference in PEOU of DLM for different age groups. All the age groups in the post hoc test have a significant level greater than 0.05, indicating that there is no significant difference in mean between age groups. The descriptive statistics also indicate no significant difference between age groups, concluding that there is no significant difference in different ages, considering the ease of using DLM. Based on the results, the hypothesis **H4: Age has a positive effect on PEOU of DLM** is rejected.

4.4.3 Comparison of Students' PU between Education Level

The significance level of ANOVA was 0.075, representing no significant difference in PU of DLM for different education levels. All the groups in the post hoc test have a significant level greater than 0.05, indicating that there is no significant difference in mean between groups. The descriptive statistics also indicate no significant difference between education levels, concluding that there is no significant difference between different education levels, considering the degree of improvement in work performance while using DLM. Based on the results, the hypothesis **H5: Education level has a positive effect on PU of DLM** is rejected.

4.4.4 Comparison of Students' PEOU between Education Level

The significance level of ANOVA was 0.966, representing no significant difference in PEOU of DLM for different education levels. All the groups in the post hoc test have a significant level greater than 0.05, indicating that there is no significant difference in mean between groups. The descriptive statistics also indicate no significant difference between education levels, concluding that there is no significant difference between different education levels, considering the ease of using DLM. Based on the results, the hypothesis **H6: Education level has a positive effect on PEOU of DLM** is rejected.

4.4.5 Comparison of Students' PU between Grades of Tertiary Studies

The significance level of ANOVA was 0.008, meaning that there is a significant difference in PU of DLM between grades of tertiary studies. In the post hoc test, Year 1 and Year 4 have a significant level of 0.004, less than 0.05, indicating that there is a significant difference between them. The descriptive statistics show that the means of each grade are 3.5000, 3.9529, 4.0300 and 4.1929, bringing in a conclusion that there is an increase in values when grades increase, considering the degree of improvement in work performance while using DLM. Based on the results, the hypothesis **H7: Higher grades in tertiary education have a positive effect on PU of DLM** is supported.

4.4.6 Comparison of Students' PEOU between Grades of Tertiary Studies

The significance level of ANOVA was 0.043, meaning that there is a significant difference in PEOU of DLM between grades of tertiary studies. In the post hoc test, Year 1 and Year 4 have a significant level of 0.023, less than 0.05, indicating that there is a significant difference between them. The descriptive statistics show that the means of each grade are 3.9143, 4.2706, 4.2500 and 4.4143, bringing in a conclusion that there is an increase in values when grades increase, considering the ease while using DLM. Based on the results, the hypothesis **H8: Higher grades in tertiary education have a positive effect on PEOU of DLM** is supported.

4.5 Pearson Correlation among Motivational Components

Bivariate Pearson correlation analysis measures the strength and direction of the linear relationship between pairs of continuous variables. The values of the Pearson correlation coefficient show that the linear association between two variables lies in the range(r) of -1 to 1, with the sign indicating the direction of the relationship. Positive correlation (+) indicates the second variable increases linearly with the first variable, while negative correlation (-) shows a decreasing correlation. Value is 0 when representing that there is no relationship between, while closer to -1 or 1 represents a stronger correlation. The r values of 0.10, 0.30 and 0.50 demarcate small, medium and large effects, respectively. (Cohen, 1988) If the significance (2-Tailed) value of the Bivariate correlation analysis is smaller than or equal to 0.05, it means that there is a significant difference between two different variables.

4.5.1 Relationship between TF and PU

The Pearson correlation between TF and PU was +0.847, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between TF and PU. Based on the results, the hypothesis **H9: TF has a positive effect on PU of DLM** is supported.

4.5.2 Relationship between TF and PEOU

The Pearson correlation between TF and PEOU was +0.614, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between TF and PEOU. Based on the results, the hypothesis **H10: TF has a positive effect on PEOU of DLM** is supported.

4.5.3 Relationship between SF and PU

The Pearson correlation between SF and PU was +0.796, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between SF and PU. Based on the results, the hypothesis **H11: SF has a positive effect on PU of DLM** is supported.

4.5.4 Relationship between SF and PEOU

The Pearson correlation between SF and PEOU was +0.645, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between SF and PEOU. Based on the results, the hypothesis **H12: SF has a positive effect on PEOU of DLM** is supported.

4.5.5 Relationship between TeacherF and PU

The Pearson correlation between TeacherF and PU was +0.652, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between TeacherF and PU. Based on the results, the hypothesis **H13: TeacherF has a positive effect on PU of DLM** is supported.

4.5.6 Relationship between TeacherF and PEOU

The Pearson correlation between TeacherF and PEOU was +0.572, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between TeacherF and PEOU. Based on the results, the hypothesis **H14: TeacherF has a positive effect on PEOU of DLM** is supported.

4.5.7 Relationship between PEOU and PU

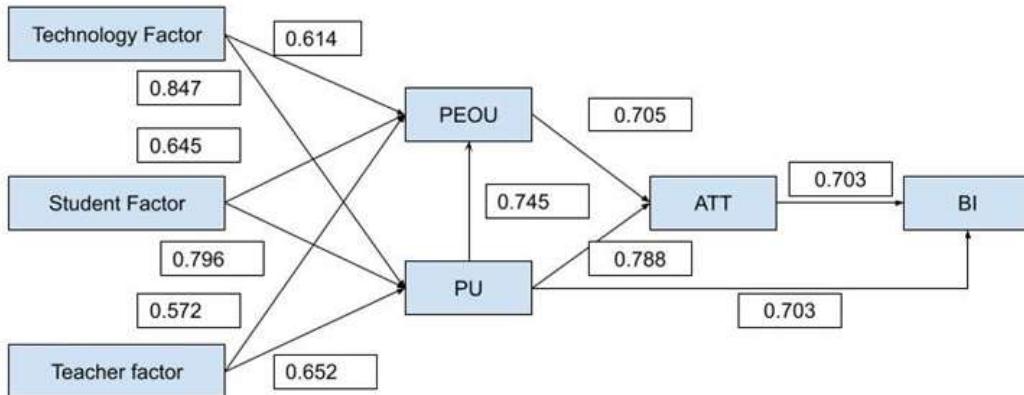
The Pearson correlation between PEOU and PU was +0.745, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between PEOU and PU. Based on the results, the hypothesis **H15: PEOU has a positive effect on PU of DLM** is supported.

4.5.8 Relationship between PEOU and ATT

The Pearson correlation between PEOU and ATT was +0.705, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between PEOU and ATT. Based on the results, the hypothesis **H16: PEOU has a positive effect on ATT of DLM** is supported.

4.5.9 Relationship between PU and ATT

The Pearson correlation between PU and ATT was +0.788, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between PU and ATT. Based on the results, the hypothesis **H17: PU has a positive effect on ATT of DLM** is supported.


4.5.10 Relationship between PU and BI

The Pearson correlation between PU and BI was +0.703, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between PU and BI. Based on the results, the hypothesis **H18: PU has a positive effect on BI of DLM** is supported.

4.5.11 Relationship between ATT and BI

The Pearson correlation between ATT and BI was +0.703, and the significant correlation lies at the 0.01 level (2-tailed). The value presents a strong positive linear relationship between ATT and BI. Based on the results, the hypothesis **H19: ATT has a positive effect on BI of DLM** is supported.

4.5.12 Results of Relationships among TAM Components

4.6 Discussion

The questionnaire, which aims to investigate Hong Kong students' perception of providing DLM, follows the TAM components and different factors. The data is used to analyse the impact of TAM components, personal characteristics and other factors on students' perceptions of using DLM. The following sections will discuss the overall components of TAM and the interaction between different personal characteristics and TAM factors. Lastly, the discussion will end by discussing the relationship between different factors.

4.6.1 Discussion of Overall TAM Components

Based on section 4.2, the mean value for descriptive statistics of each factor was higher than 3 (NEUTRAL), representing the perspective of students in DLM. The following values represent the mean and standard deviation of the descriptive statistics, followed by an explanation

1. TF – 4.0850 and 0.47329. Students were satisfied with the technology and information quality of DLM.
2. SF – 3.8523 and 0.56504. Students were satisfied with their experience and eager to use DLM. This includes the technology experience, satisfaction, concentration and psychology of respondents. Students perceived that they had significant experience using DLM.
3. TeacherF – 4.0000 and 0.49488. Students were satisfied with the DLM that their teacher used. This includes the attitudes, beliefs, tolerance and training of teachers using DLM.

In TAM, there are also 3 components:

1. PU – 4.0033 and 0.62396. Respondents had a high PU and predicted ATT, both directly and indirectly, towards people's intentions. (Davis, 1989)
2. PEOU – 4.2496 and 0.52299. Respondents believe that using DLM will be free of effort. (Davis, 1989) PEOU will affect ATT.
3. ATT – 4.0510 and 0.53309. Represents the attitude of students using DLM and has a strong relationship with BI.
4. BI – 3.9318 and 0.53619. Respondents have a high intention to use DLM.

The technology and information quality of DLM were high and made students more willing to use DLM. It improves students' learning effectiveness, such as the layout of FLM, which was clear and can enhance user experience, thus affecting PU and PEOU. The attitude and method of teachers using DLM improve PU and PEOU. Lastly, PU and PEOU will affect ATT, while ATT will affect BI.

4.6.2 Discussion of Gender Difference in DLM

The hypothesis **H1: PU of DLM is different between genders** is rejected, thus showing no significant difference in PU between genders. Previous research has pointed out that men and women have different levels of self-confidence and motivations in science and technology. The stereotypical view of different genders using technology was "relative to male users, female users might have more negative attitudes towards technology and technology use." (Canada & Brusca, 1991) The result, however, shows that male and female users had a close thought for PU of DLM. Since there are legal regulations in Hong Kong that ensure education and resources are received equally between men and women, both genders are able to experience the same learning method, which includes technology implementations. This has deeply affected women's attitude towards DLM, especially the younger generations. (Buccheri et. al., 2011)

The hypothesis **H2: PEOU of DLM is different between genders** is rejected, thus showing no significant difference in PEOU between genders. Previous research has pointed out that "female users report less positive

attitudes and self-efficacy towards ICT than male users.” (Sølvberg, 2003; Volman et al., 2005; OECD, 2005; Lynch, 2007; Tømte & Hatlevik, 2011) However, the results show that male users and female users had a close thought for PEOU of DLM. This proves that female students are getting more confident in using advanced computer skills, such as computer applications, and are actively catching up with the belief that using a specific system does not require effort. (Naciri, 2016)

4.6.3 Discussion of Age & Education Level Difference in using DLM

The study finds that age and education level do not significantly affect PU or PEOU of DLM. This is supported by One-way ANOVA results, which show no statistically significant differences across age groups or education levels. The lack of significant differences can be attributed to the widespread exposure to technology among Hong Kong's new generation, who have grown up with smartphones and ICT.

1. Age Groups – Respondents from different age groups perceive DLM as helpful in enhancing job performance and easy to use. Thus, the hypotheses **H3: Age has a positive effect on PU of DLM** and **H4: Age has a positive effect on PEOU of DLM** were rejected.
2. Education Levels – Despite differences in the duration of DLM use, students across education levels show high PEOU due to their familiarity with ICT. The hypotheses **H5: Education level has a positive effect on PU of DLM** and **H6: Education level has a positive effect on PEOU of DLM** were rejected.

This supports the finding (Kubiatko, 2013) that where the popularity of electronic technology products increases, as most of the new generation students have been exposed to electronic technology since their childhood. They considered that the majority of internet-related items are commonplace and do not have problems with their use. This also rejects the findings of Alenezi (2023), where the author describes that students from higher education are affected the most in digital transformation.

4.6.4 Discussion of Grade Differences in Tertiary Studies

Grade level within tertiary studies shows a statistically significant difference in both PU and PEOU of DLM, as per One-way ANOVA results. Higher-grade students report higher PU, indicating they believe DLM enhances their work performance more than lower-grade students. This is likely due to greater exposure and experience with DLM in university settings. Higher-grade students also report higher PEOU, finding DLM easier to use. This is attributed to their advanced ICT literacy, including skills in information management, analysis, and evaluation. As universities in Hong Kong extensively use DLM, students in higher grades have more experience, enabling them to relate new information to prior knowledge (Lustbader, 1998). This supports the hypotheses **H7: Higher grade in tertiary education has a positive effect on PU of DLM** and **H8: Higher grade in tertiary education has a positive effect on PEOU of DLM**.

4.6.5 Discussion of TF

TF, which encompasses technology and information quality, positively affect PU and PEOU. High-quality DLM systems with simple interfaces and clear layouts enhance ease of use and usefulness, supporting prior studies. (Fathema & Sutton, 2013; Park et al., 2012) Thus, it supports the hypotheses **H9: TF has a positive effect on PU of DLM** and **H10: TF has a positive effect on PEOU of DLM**. This is similar to students agreeing that media-related abilities help them utilise digital technologies, which will improve their digital learning. (Sayaf et. al., 2022)

4.6.6 Discussion of SF

SF, including technology experience, satisfaction, concentration, and psychological pressure, positively correlate with PU and PEOU. Students with higher SF perceive DLM as more useful and easier to use, supporting the hypotheses **H11: SF has a positive effect on PU of DLM** and **H12: SF has a positive effect on PEOU of DLM**. (Baki et al., 2018)

4.6.7 Discussion of TeacherF

TeacherF, including satisfaction with teaching methods and teacher attitude, positively influence PU and PEOU. Effective teacher-student interactions via DLM reduce distractions and improve learning effectiveness. Therefore, it supports the hypotheses **H13: TeacherF has a positive effect on PU of DLM** and **H14: TeacherF has a positive effect on PEOU of DLM**. This supports the idea that teachers may require continuous professional development and training in digital learning materials. (Camilleri & Camilleri, 2016)

4.6.8 Discussion Between PEOU and PU

PEOU positively affects PU, as easier-to-use systems are perceived as more useful, aligning with Expectation Confirmation Theory. (Oliver, 1980) Thus, hypothesis **H15: PEOU has a positive effect on PU of DLM** is

supported. This also supports the study by Cho and Hung (2009), which shows the relationship between PEOU and PU in e-learning.

4.6.9 Discussion of PEOU and PU on ATT

Both PEOU and PU positively influence students' attitudes toward DLM. Higher PEOU reduces effort, and higher PU improves performance, leading to favorable attitudes. (Şumak et al., 2011; Alfadda & Mahdi, 2021) Thus, hypotheses **H16: PEOU has a positive effect on ATT of DLM** and **H17: PU has a positive effect on ATT of DLM** were supported.

4.6.10 Discussion of PU and ATT on BI

PU and ATT positively affect BI. Students are more likely to use DLM if they perceive it as applicable and have a positive attitude, consistent with TAM (Davis, 1989; Ajzen & Fishbein, 1980). Thus, hypotheses **H18: PU has a positive effect on BI of DLM** and **H19: ATT has a positive effect on BI of DLM** were supported.

5. Conclusion & Suggestions

The study results are shown in the following table:

Hypotheses	Result
<i>H1: PU of DLM is different between genders</i>	<i>Rejected</i>
<i>H2: PEOU of DLM is different between genders</i>	<i>Rejected</i>
<i>H3: Age has a positive effect on PU of DLM</i>	<i>Rejected</i>
<i>H4: Age has a positive effect on PEOU of DLM</i>	<i>Rejected</i>
<i>H5: Education level has a positive effect on PU of DLM</i>	<i>Rejected</i>
<i>H6: Education level has a positive effect on PEOU of DLM</i>	<i>Rejected</i>
<i>H7: Higher grade in tertiary education has a positive effect on PU of DLM</i>	<i>Supported</i>
<i>H8: Higher grade in tertiary education has a positive effect on PEOU of DLM</i>	<i>Supported</i>
<i>H9: TF has a positive effect on PU of DLM</i>	<i>Supported</i>
<i>H10: TF has a positive effect on PEOU of DLM</i>	<i>Supported</i>
<i>H11: SF has a positive effect on PU of DLM</i>	<i>Supported</i>
<i>H12: SF has a positive effect on PEOU of DLM</i>	<i>Supported</i>
<i>H13: TeacherF has a positive effect on PU of DLM</i>	<i>Supported</i>
<i>H14: TeacherF has a positive effect on PEOU of DLM</i>	<i>Supported</i>
<i>H15: PEOU has a positive effect on PU of DLM</i>	<i>Supported</i>
<i>H16: PEOU has a positive effect on ATT of DLM</i>	<i>Supported</i>
<i>H17: PU has a positive effect on ATT of DLM</i>	<i>Supported</i>
<i>H18: PU has a positive effect on BI of DLM</i>	<i>Supported</i>
<i>H19: ATT has a positive effect on BI of DLM</i>	<i>Supported</i>

Table 5.0 Results of the Hypotheses

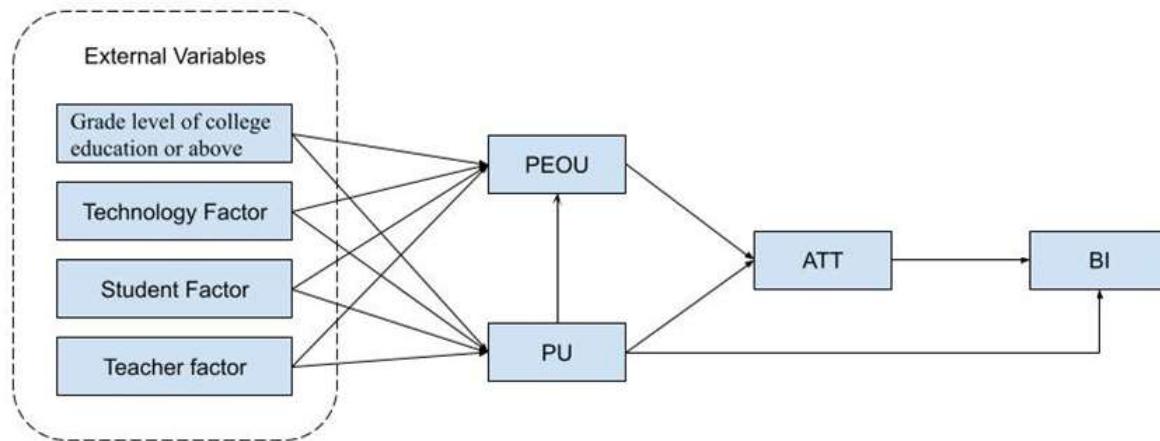


Fig 5.0: General Extended Technology Acceptance Model of Hong Kong Students' Perception in DLM

The results show that Hong Kong students believe that DLM is easy to use and serves as an effective role in the education system. This implies that Hong Kong students prefer DLM to be included in their syllabus after the materials are assessed with the external variables above. Students also believe that if the education system is valuable and easy to cope with, they will be more likely to study and revise. Thus, DLM can be a useful milestone to boost students' urge of learning.

5.1 Suggestion

After collecting data, it was found that TF, SF and TeacherF were the main external variables influencing the student acceptance and intention to use DLM. Thus, the following are suggestions based on the factors:

1. TF represents the technology and information quality of DLM. Improving the system interface to make it easier to understand, helping students to record key points and make notes, improves their PEOU and PU.
2. SF represents the technology experience, satisfaction, concentration and psychological pressure of respondents. Schools can set a transition period for students to adapt to DLM and accumulate experience in using DLM, increasing their satisfaction.
3. TeacherF represents the students' satisfaction with the teachers' method with DLM and teacher attitude. Teachers and institutions can set up a scoring and feedback system, allowing students to reflect on their ideas of DLM. Teachers can then improve their DLM methods by responding to or solving students' difficulties in using DLM.

5.2 Limitations of the Study

There were 2 main limitations of this study:

1. Time limitation – As the research is conducted during the COVID-19 pandemic, most schools have already implemented online teaching, making it challenging to collect data. Thus, only 121 responses were collected. More data will be needed to improve accuracy.
2. Small and uneven distribution of data samples – Small data collection affects the study's representativeness. In addition, the groups are not evenly represented in terms of gender and age. There were also no representatives beyond the age of 27.

5.3 Future Research

After the study, 2 recommendations were suggested for future research:

1. The study focuses on students from secondary school to the tertiary level. However, it was believed to have a greater impact in primary school and early education as it requires more activities and interaction. Future research is advised to focus on this direction. As they lack the ability to complete the questionnaires, it is advisable to collect data through interviews and researcher test assistance, thus requiring more research time.
2. Future research is advised to investigate the influence of subjects towards DLM. The LM for science and liberal arts may be different, as science involves numerical formulations while liberal arts involves vocabulary. Thus, significant differences may be observed in future studies.

References

Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived Usefulness, Ease of Use, and Usage of Information Technology: A Replication. *MIS Quarterly*, 16(2), 227. <https://doi.org/10.2307/249577>

Agarwal, R., & Prasad, J. (1999). Are Individual Differences Germane to the Acceptance of New Information Technologies? *Decision Sciences*, 30(2), 361–391. <https://doi.org/10.1111/j.1540-5915.1999.tb01614.x>

Ajzen, I. (1991). The theory of planned behavior. *Organizational Behavior and Human Decision Processes*, 50(2), 179–211. [https://doi.org/10.1016/0749-5978\(91\)90020-T](https://doi.org/10.1016/0749-5978(91)90020-T)

Ajzen, I., & Fishbein, M. (1980). *Understanding attitudes and predicting social behavior* (Paperback edition.). Prentice-Hall.

Alenezi, M. (2023). Digital Learning and Digital Institution in Higher Education. *Education Sciences*, 13(1), 88. <https://www.mdpi.com/2227-7102/13/1/88>

Alfadda, H. A., & Mahdi, H. S. (2021). *Measuring Students' Use of Zoom Application in Language Course Based on the Technology Acceptance Model (TAM)*.

Allen, M. (Ed.). (2017). Leadership. *The SAGE Encyclopedia of Communication Research Methods*. <https://doi.org/10.4135/9781483381411.n293>

Arbaugh, J. B. (2002). Managing the on-line classroom: A study of technological and behavioral characteristics of web-based MBA courses. *The Journal of High Technology Management Research*, 13(2), 203–223. [https://doi.org/10.1016/S1047-8310\(02\)00049-4](https://doi.org/10.1016/S1047-8310(02)00049-4)

Arnseth, H. (2006). *Learning to play or playing to learnA critical account of the models of communication informing educational research on computer gameplay*. 6.

Atkinson, J. W. (1964). *An Introduction to Motivation*. Van Nostrand Reinhold Company, Cop.

Baki, R., Birgoren, B., & Aktepe, A. (2018). A Meta Analysis of Factors Affecting Perceived Usefulness and Perceived Ease of Use in the Adoption of E-Learning Systems. *Turkish Online Journal of Distance Education*, 19(4), 4–42. <https://doi.org/10.17718/tojde.471649>

Bowling, A. (2002). *Research methods in health: investigating health and health services*. 2nd edition.

Breckler, S. J., & Wiggins, E. C. (1991). Cognitive responses in persuasion: Affective and evaluative determinants. *Journal of Experimental Social Psychology*, 27(2), 180–200. [https://doi.org/10.1016/0022-1031\(91\)90021-w](https://doi.org/10.1016/0022-1031(91)90021-w)

Broos, A. (2005). Gender and Information and Communication Technologies (ICT) Anxiety: Male Self-Assurance and Female Hesitation. *CyberPsychology & Behavior*, 8(1), 21–31. <https://doi.org/10.1089/cpb.2005.8.21>

Buccheri, G., Gürber, N. A., & Brühwiler, C. (2011). The Impact of Gender on Interest in Science Topics and the Choice of Scientific and Technical Vocations. *International Journal of Science Education*, 33(1), 159–178. <https://doi.org/10.1080/09500693.2010.518643>

Burton-Jones, A., & Hubona, G. S. (2006). The mediation of external variables in the technology acceptance model. *Information & Management*, 43(6), 706–717. <https://doi.org/10.1016/j.im.2006.03.007>

Camilleri, M. A., & Camilleri, A. C. (2016). Digital Learning Resources and Ubiquitous Technologies in Education. *Technology, Knowledge and Learning*, 22(1), 65–82. <https://doi.org/10.1007/s10758-016-9287-7>

Canada, K., & Brusca, F. (1991). The technological gender gap: Evidence and recommendations for educators and computer-based instruction designers. *Educational Technology Research and Development*, 39(2), 43–51. <https://doi.org/10.1007/bf02298153>

Cho, V., & Hung, H. (2009). A Study of the Relationship between PEOU and PU in Technology Acceptance in E-Learning. In H. Hung, Y. H. Wong, & V. Cho (Eds.), *Ubiquitous Commerce for Creating the Personalized Marketplace: Concepts for Next Generation Adoption* (pp. 149–170). Information Science Reference. <https://doi.org/10.4018/978-1-60566-378-4.ch010>

Chung, J. E., Park, N., Wang, H., Fulk, J., & McLaughlin, M. (2010). Age differences in perceptions of online community participation among non-users: An extension of the Technology Acceptance Model. *Computers in Human Behavior*, 26(6), 1674–1684. <https://doi.org/10.1016/j.chb.2010.06.016>

Cohen, J. (1988). *Statistical Power Analysis for the Behavioral Sciences* (2nd ed.). Routledge. <https://doi.org/10.4324/9780203771587>

Davis, F. (1985). *A Technology Acceptance Model for Empirically Testing New EndUser Information Systems*.

Davis, F. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. *MIS Quarterly*, 13, 319-. <https://doi.org/10.2307/249008>

Delone, W. H., & McLean, E. R. (2003). The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. *Journal of Management Information Systems*, 19(4), 9–30.

Denscombe, M. (2003). *The good research guide : for small-scale social research projects*. Open University Press.

Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. *Information & Management*, 36(1), 9–21. [https://doi.org/10.1016/s0378-7206\(98\)00101-3](https://doi.org/10.1016/s0378-7206(98)00101-3)

Dumont, H., Istance, D., & Benavides, F. (2010). The Nature of Learning. In *Educational Research and Innovation*. OECD. <https://doi.org/10.1787/9789264086487-en>

Fathema, N., & Sutton, K. L. (2013). Factors influencing faculty members' Learning Management Systems

adoption behavior: An analysis using the Technology Acceptance Model. *International Journal of Trends in Economics Management & Technology*, 2, 20–28.

Fishbein, M., & Ajzen, I. (1975). A bayesian analysis of attribution processes. *Psychological Bulletin*, 82(2), 261–277.

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. *Journal of Marketing Research*, 18(1), 39–50.

Han, J.-H., & Sa, H. J. (2021). Acceptance of and satisfaction with online educational classes through the technology acceptance model (TAM): the COVID-19 situation in Korea. *Asia Pacific Education Review*, 23, 403–415. <https://doi.org/10.1007/s12564-021-09716-7>

Hong, X., Zhang, M., & Liu, Q. (2021). Preschool Teachers' Technology Acceptance During the COVID-19: An Adapted Technology Acceptance Model. *Frontiers in Psychology*, 12. <https://doi.org/10.3389/fpsyg.2021.691492>

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. *Information & Management*, 43(6), 740–755. <https://doi.org/10.1016/j.im.2006.05.003>

Kubiak, Milan. (2013). The Comparison of Different Age Groups on the Attitudes toward and the Use of ICT. *Educational Sciences: Theory and Practice*, 13, 1263–1272.

Lustbader, P. (2024). *Teach in Context: Responding to Diverse Student Voices Helps All Students Learn*. Ssrn.com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1141958

Lynch, J. (2007). *Gender and Information Technology*. Common Ground Publications.

Morris, M. G., & Venkatesh, V. (2000). Age Differences in Technology Adoption Decisions: Implications for a Changing Workforce. *Personnel Psychology*, 53(2), 375–403. <https://doi.org/10.1111/j.1744-6570.2000.tb00206.x>

Naciri, H. (2016). Gender Discrepancies in the Use of ICT in Higher Education. *Innovation in Language Learning*, 9.

OECD. (2005). New Perspectives on ICT Skills and Employment. *OECD Digital Economy Papers*. <https://doi.org/10.1787/232342747761>

Oliver, R. L. (1980). A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions. *Journal of Marketing Research*, 17(4), 460–469. JSTOR. <https://doi.org/10.2307/3150499>

Park, S. Y., Nam, M.-W., & Cha, S.-B. (2011). University students' behavioral intention to use mobile learning: Evaluating the technology acceptance model. *British Journal of Educational Technology*, 43(4), 592–605. <https://doi.org/10.1111/j.1467-8535.2011.01229.x>

Porter, C., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. *J Bus Res*.

Rogers, E.M. (2003) *Diffusion of Innovations*. Free Press, New York.

Sayaf, A. M., Alamri, M. M., Alqahtani, M. A., & Alrahmi, W. M. (2022). Factors Influencing University Students' Adoption of Digital Learning Technology in Teaching and Learning. *Sustainability*, 14(1), 493. <https://doi.org/10.3390/su14010493>

Seddon, P. B. (1997). A Respecification and Extension of the DeLone and McLean Model of IS Success. *Information Systems Research*, 8(3), 240–253. <https://doi.org/10.1287/isre.8.3.240>

Shin, E.-C., Lee, J.-S., & Cho, G.-T. (2011). A Study on The Frost Penetration Depth of Pavement with Field Temperature Data. *International Journal of Highway Engineering*, 13(1), 21–32. <https://doi.org/10.7855/ijhe.2011.13.1.021>

Sølvberg, A. M. (2003). Computer-Related Control Beliefs and Motivation. *Journal of Research on Technology in Education*, 35(4), 473–487. <https://doi.org/10.1080/15391523.2003.10782397>

Šumak, B., Heričko, M., & Pušnik, M. (2011). A meta-analysis of e-learning technology acceptance: The role of user types and e-learning technology types. *Computers in Human Behavior*, 27(6), 2067–2077. <https://doi.org/10.1016/j.chb.2011.08.005>

Thurmond, V. A., Wambach, K., Connors, H. R., & Frey, B. B. (2002). Evaluation of Student Satisfaction: Determining the Impact of a Web-Based Environment by Controlling for Student Characteristics. *American Journal of Distance Education*, 16(3), 169–190. https://doi.org/10.1207/s15389286ajde1603_4

Tømte, C., & Hatlevik, O. E. (2011). Gender-differences in Self-efficacy ICT related to various ICT-user profiles in Finland and Norway. How do self-efficacy, gender and ICT-user profiles relate to findings from PISA 2006. *Computers & Education*, 57(1), 1416–1424. <https://doi.org/10.1016/j.compedu.2010.12.011>

Volman, M., van Eck, E., Heemskerk, I., & Kuiper, E. (2005). New technologies, new differences. Gender and ethnic differences in pupils' use of ICT in primary and secondary education. *Computers & Education*, 45(1), 35–55. <https://doi.org/10.1016/j.compedu.2004.03.001>

Wixom, B. H., & Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. *Information Systems Research*, 16(1), 85–102. <https://doi.org/10.1287/isre.1050.0042>

Yang, L., Weng, T., Yang, D., & Wu, P. (2014). The Effectiveness of Digital Teaching Materials on Introduction Statistics. *Advances in Intelligent Systems Research/Advances in Intelligent Systems Research*. <https://doi.org/10.2991/ermm-14.2014.73>

Zhou, L., Xue, S., & Li, R. (2022). Extending the Technology Acceptance Model to Explore Students' Intention to Use an Online Education Platform at a University in China. *SAGE Open*, 12(1), 215824402210852. <https://doi.org/10.1177/21582440221085259>

The Development of Blended Teaching Using Learning Platform in College English Education Under the Influence of AI

Yan XINLI

*Learning Technology and Innovation Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
xinli_y@mail.rmutt.ac.th, ORCID: 0009-0007-9248-782X*

Naruemon THEPNUAN**(Corresponding author)*

*Educational Technology and Communications Division, Faculty of Technical Education, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
naruemon_t@mail.rmutt.ac.th, ORCID: 0009-0008-0111-7119*

ABSTRACT

The objectives of this research were to: 1) develop blended teaching using a learning platforms in college English education under the influence of AI to have quality, 2) compare the blended teaching using a learning platform in college English education under the influence of AI, and 3) study the satisfaction of students who study blended teaching using learning platforms in college English education under the influence of AI.

The study sample consisted of 35 students selected by purposive sampling from Class 2, in the academic year 2024, majoring in clinical medicine at Inner Mongolia Medical University, China. They are students enrolled in blended teaching using online learning platforms in college English education. The instruments included 1) the Xuexitong Online Learning Platform, 2) a Textbook, 3) an evaluation form regarding the quality of media and content, 4) an achievement assessment (pre-test and post-test), and 5) the Questionnaire on Students' Satisfaction form. Statistics used for data analysis were mean, standard deviation, and a t-test for dependent samples.

The results showed that: 1) the blended teaching using learning platform in college English education under influence of AI as having good quality in term of media, with an average score of 4.47, and excellent quality in term of content, with an average score of 4.73; 2) students who learned the blended teaching using learning platform in college English education under influence of AI as reflected in an average pre-test score of 39.00 points and a higher average post-test score of 87.00 points. This increase in scores from pre-test to post-test was statistically significant at the .05 level; and 3) students were highly satisfied with the blended teaching using learning platform in college English education under influence of AI, with an average satisfaction score of 4.87, representing the highest level of satisfaction.

Keywords: Blended Teaching, Online Learning Platform, College English Education, AI

INTRODUCTION

Background and Statement of the Problem

In higher education, artificial intelligence (AI) is driving transformative change by enabling personalized and adaptive learning experiences, streamlining administrative tasks, and generating data-driven insights. These capabilities make AI a pivotal component in blended teaching—a model that integrates face-to-face and online instruction to enhance flexibility, address limitations of fully online formats (such as delayed feedback and low engagement), and optimize educational outcomes. With the continued evolution of AI, its integration into blended learning is expected to grow in scope and impact. In China, this trend is reinforced by the “Guidelines for College English Instruction (2020 Edition),” which advocate the deep integration of information technology and AI into English teaching to foster individualized and independent learning. As a result, blended learning, supported by intelligent technologies, is positioned to become a principal instructional model in modern higher education.

However, the current state of college English education still faces significant challenges. Currently, the overall design of college English presents a relatively old and single form, lacking distinctive features and failing to meet students' diverse needs. Traditional teaching methods prevail, with teachers positioned at the center and students relegated to passive roles. This dynamic often leads to a lack of motivation, autonomy, and innovative thinking among learners. At the same time, affected by the uneven distribution of educational resources, students in some colleges cannot get high-quality teaching resources, which will lead to uneven education results. The rapid development of information technology has provided rich online teaching resources for college English teaching, but there is still a problem of low efficiency in the use of online resources in daily teaching. Many teachers do not understand the importance and do not have the ability to use online resources for college

English teaching design; in addition, students' English learning outside the classroom is mostly fragmented learning, and they cannot use online resources to build their own English knowledge system efficiently.

To solve these problems, some universities have begun to try to build an AI-enhanced blended teaching model for college English education, aiming to break the limitations of time and space, optimize the allocation of educational resources, and improve the quality and effect of college English teaching. The introduction of an online and offline blended teaching model in college English education can not only reshape the professional role of teachers, but also allow teachers to return to small online classrooms, campuses, and social classrooms.

Research Objectives

The objectives of this research were to: 1) develop blended teaching using a learning platforms in college English education under the influence of AI to have quality, 2) compare the blended teaching using a learning platform in college English education under the influence of AI, and 3) study the satisfaction of students who study blended teaching using learning platforms in college English education under the influence of AI.

Research Questions and Hypothesis

- 1) Students who study with blended teaching using learning platform in college English education under the influence of AI can increase their academic achievement.
- 2) Students who study with blended teaching using learning platform in college English education under the influence of AI can improve their learning satisfaction.

LITERATURE REVIEW

Blended learning

It integrates online and traditional classroom teaching, is a key direction for educational reform, providing flexible and personalized learning opportunities. It combines the advantages of both environments through diverse pedagogical approaches and technologies, implemented across activity, course, program, and institutional levels (Caner, 2010). This model offers significant benefits, including flexibility, rich resources, adaptive technologies, and interactive tools that enhance engagement and improve outcomes (Sharma et al., 2022). In the context of college English teaching, blended learning aligns with China's Guidelines (2020) and supports personalized, dynamic curriculum systems (Wang et al., 2018). Its application, characterized by freedom, technology, and interactivity, improves English proficiency and autonomous learning ability, as evidenced in practical implementations theme activities (Gan et al., 2021).

Online learning platforms

Online learning platforms have become integral to modern education, significantly enhancing English language learning by providing realistic communication environments and diverse resources such as videos, audios, and interactive software. These platforms support diverse, flexible, and autonomous learning, emphasizing resource sharing and personalization, helping improve instructional efficiency and student engagement (Chen, 2020). Though existing platforms still face challenges that may affect learning experience and resource integration (Lu, 2019), online learning platforms continue to evolve, supporting more adaptive and collaborative foreign language education.

Artificial intelligence (AI)

AI is driving a transformative shift in education and prompting global strategic initiatives (Dai et al., 2020). Current AI applications in education include intelligent platforms for personalized learning, AI-assisted teaching tools, smart evaluation systems, VR/AR immersive experiences, and interactive robots (Knox, 2020). Dong (2024) further proposes a structured application model for AI in educational contexts. Within English language teaching, AI technologies—supported by big data, cloud computing, and speech recognition—enable personalized and adaptive learning experiences. These tools address individual differences and enhance efficiency through smart classrooms and real-time feedback (Mushthoza et al., 2023).

College English education

From traditional Grammar Translation and Audio-lingual methods to more contemporary Communicative and Task-Based Language Teaching (TBLT) approaches, integrating multiple methods to suit diverse learner needs and contexts is advocated increasingly (Ellis et al., 2020). However, significant challenges persist, including outdated teacher-centered practices, limited proficiency among instructors, large class sizes, and insufficient resources. Students often lack motivation and real-world English use opportunities, while varying proficiency levels complicate instruction. The integration of technology, though beneficial, introduces distractions and may hinder deep, collaborative learning (Krishnan et al., 2020). Research in China emphasizes that successful digital

transformation depends on platform diversity, teacher readiness, and improved interaction models to foster student participation and problem-solving skills (Li & Yang, 2022).

Assessment and evaluation in blended learning

Assessment and evaluation in blended learning focus on course outcomes, learner satisfaction, and student engagement, integrating multidimensional metrics such as academic performance, retention rates, and qualitative feedback (Berzosa et al., 2017). AI is increasingly applied to enhance assessment efficiency and personalization. Furthermore, AI enables personalized feedback and adaptive learning support by analyzing individual progress and providing real-time interventions (Maier & Klotz, 2022). Predictive analytics help identify at-risk students through patterns in behavior and performance, enabling early support to improve retention and outcomes (Alam & Mohanty, 2022).

Technology acceptance and adoption in education

Technology acceptance and adoption are influenced by a range of theoretical models and contextual factors. Key theories include the Technology Acceptance Model (TAM), which emphasizes perceived usefulness and ease of use, and the expanded TAM2 incorporating social influence and cognitive processes. The Combined TAM-TPB model integrates social norms and control beliefs, while the Motivational Model (MM) highlights intrinsic and extrinsic drivers of adoption (Ursavaş, 2022). Social Cognitive Theory (SCT) underscores the role of self-efficacy and observational learning. For students, key factors include perceived utility, intrinsic motivation, peer influence, and access to reliable infrastructure (Khan et al., 2021). Additionally, socio-cultural context and external policy pressures further affect integration efforts. The ADDIE model provides a systematic framework for designing and implementing technology-enhanced instruction, emphasizing analysis, design, development, implementation, and evaluation in an iterative cycle to align with learner and institutional needs. Successful adoption thus depends on addressing both individual beliefs and broader environmental conditions.

Academic achievement

Academic achievement reflects the attainment of educational goals through measures like grades and test scores, is shaped by cognitive, motivational, and instructional factors. Key influences include student motivation, self-regulation, and effective learning strategies (Schunk et al., 2020). In college English education, achievement is assessed through reading, writing, listening, and speaking competencies, increasingly supported by blended and AI-enhanced platforms that enable continuous assessment and personalized feedback (Zou et al., 2021). Critical factors specific to English learning include student engagement, self-regulated learning, technological proficiency, and peer interaction, all of which are facilitated by digital tools and collaborative activities (He et al., 2021). The integration of AI and blended learning provides adaptive, real-time support, helping improve language outcomes by targeting individual learning needs.

Student satisfaction

It is defined as the fulfillment of students' expectations and needs within the educational experience, is a key indicator linked to engagement and academic success. It is commonly assessed through surveys evaluating instruction quality, resource relevance, and support effectiveness (Hew et al., 2020). In technology-enhanced environments—particularly in college English education—satisfaction is significantly influenced by platform usability, real-time feedback, and AI-driven personalization (Al-Fraihat et al., 2020). Key factors for enhancing satisfaction include quality instructor-student interaction supported by timely feedback, user-friendly and accessible learning platforms with diverse multimedia resources, and adaptive AI systems that tailor content to individual needs (Zou et al., 2021). Additionally, peer collaboration through discussions and group activities further enriches the learning experience and boosts satisfaction in language acquisition contexts.

RESEARCH METHODOLOGY

Research Design

This study employs a quantitative, one-group pretest-posttest design to examine the impact of AI-influenced blended teaching via Xuexitong platform on first-year undergraduates in a College English course. Data in numerical form were collected through tests, with structure as follows: a pretest (O₁) was administered, followed by the intervention (X)—implementation of blended teaching using the online platform—and concluded with a post-test (O₂) to measure achievement.

Group: O1 X O2

O1 = Measurement of the pretest score

X = Blended Teaching Using Online Learning Platform in College English Education
under the Influence of AI

O2 = Measurement of the achievement of the post-test score

Population and Sample

The study population consisted of 420 first-year Clinical Medicine majors from twelve classes at Inner Mongolia Medical University in the 2024 academic year. Using purposive sampling, a sample of 35 students from Class 2 was selected, all of whom were enrolled in the blended College English course delivered via an online learning platform.

Research Instrument

The research instruments employed in this study on the implementation of blended teaching using the Xuexitong online learning platform in College English education under the influence of AI were carefully selected and developed to ensure comprehensive data collection and validity. The primary tools included the Xuexitong platform itself, the prescribed textbook, a structured framework for online course development and evaluation, achievement assessments, and a student satisfaction questionnaire.

Xuexitong Online Learning Platform

Xuexitong served as the core technological medium for this study. It is a multifunctional online learning platform accessible via mobile, tablet, and computer terminals, supporting a blended learning approach by integrating abundant teaching resources and enabling bidirectional teacher-student communication. Key features utilized included notifications, sign-ins, grouping, discussions, assignments, and data analytics, which facilitated interactive and personalized learning. The platform's ability to host diverse learning materials—such as texts, images, and videos—and support autonomous learning activities like resource searches and course discussions was central to the intervention. Moreover, its data recording and analysis capabilities allowed for timely teaching adjustments and personalized instruction.

Evaluation Form Regarding the Quality of Media and Content Instruments Development and Evaluation

The development and validation of the online course followed a rigorous process grounded in the ADDIE instructional design model (Analysis, Design, Development, Implementation, Evaluation). The course was structured around six core elements: instructional design, teaching resources, learning activities, technical support, learning support, and evaluation/feedback. Course objectives were formulated across three dimensions—knowledge, ability, and educational goals—tailored to unit-specific content. Teaching resources included multimedia materials, real-life case studies, interactive exercises, and AI-enhanced tools for personalized learning paths and automated feedback. Course evaluation involved multi-method assessment: learning analytics from platform usage data, knowledge-based unit and final exams, practical application tasks, student feedback surveys, and comparative analysis with traditional teaching outcomes. Validity was assured through expert reviews using an Item Objective Congruence (IOC) index, with a criterion of $IOC > 0.5$ for acceptance.

Achievement Assessment (Pretest and Post-test)

The achievement assessment consisted of parallel pretest and post-test instruments, each comprising 20 multiple-choice questions designed to evaluate knowledge and skills acquired during the course. The tests underwent expert validation to ensure congruence with learning objectives ($IOC > 0.5$), and were piloted to establish psychometric quality—targeting a difficulty index (P) between 0.2–0.8, a discrimination index (D) of at least 0.2, and high reliability ($KR-20 \geq 0.8$).

The Questionnaire on Students' Satisfaction Form

A structured questionnaire was developed to measure student satisfaction with the blended learning experience. It contained a closed-ended section using a five-point Likert scale (from 1 = Very Poor to 5 = Highest) to quantify perceptions of course quality, platform usability, and learning support, and an open-ended section for qualitative feedback. The instrument was validated by experts for content appropriateness and objective congruence ($IOC > 0.5$), and responses were interpreted using defined ranges for mean scores.

DATA COLLECTION AND ANALYSIS

Data Collection

The data collection process involved 35 first-year clinical medicine students who registered for and participated in a one-semester College English online course. Prior to the intervention, a pretest was administered to assess initial proficiency. Following the completion of the online course activities, a post-test was conducted under the same conditions. Both sets of scores were collected for subsequent statistical comparison to evaluate the impact of the blended learning intervention on academic performance.

Data Analysis

Data analysis employed mean differences, standard deviations, and t-tests. Three content and three media experts evaluated the online course materials using mean and standard deviation metrics to assess quality and usability. Pretest and post-test scores were compared via t-test to identify significant differences in student performance and determine the effectiveness of the course. Additionally, student satisfaction with the AI-supported blended learning approach was analyzed using descriptive statistics (mean and standard deviation) to gauge perceived efficiency and acceptance.

RESEARCH RESULT

Results of evaluation of blended teaching using a learning platform in college English education under the influence of AI to have quality.

Table 1 The blended teaching using a learning platform in college English education under the influence of AI to have quality from three media experts.

Item	\bar{X}	SD.	Meaning
1. Are the facts, statistics and information accurate and reliable? Are they supported by reliable sources and evidence-based research?	4.33	0.58	Good
2. Is the information presented clearly and simply? Is it easy to understand and explain, even for those without a background in blended teaching?	4.33	0.58	Good
3. How visually appealing is it? Does it use color, images, and graphics effectively to attract attention and convey information?	4.67	0.58	Excellent
4. Does it provide a fully presentation of the blended teaching's influence on students?	4.33	1.15	Good
5. Is it tailored to the target students? Does it take into account the age, interests and background of the target students?	4.67	0.58	Excellent
6. Are there any interactive elements or features in the media that engage the learners and enhance the learning experience?	4.67	0.58	Excellent
7. Does it always maintain consistency of information and reinforce key knowledge and objectives?	4.33	0.58	Good
8. Is it accessible to people with different disabilities, such as the visually impaired? Are there other formats or amenities available?	4.33	0.58	Good
9. Does it include a clear call to action or practical steps that students can take to improve their English skills?	4.33	1.15	Good
10. Is it original and creative and stand out from other similar media? Does it use unique design elements or innovative approaches to convey the knowledge?	4.67	0.58	Excellent
Total	4.47	0.49	Good

From table 1, the blended teaching using learning platform in college English education under influence of AI as having good quality in term of media, with an average score of 4.47.

Table 2 The blended teaching using a learning platform in college English education under the influence of AI has quality from three content experts.

Item	\bar{X}	SD.	Meaning
1. Does the teaching content adequately develop students' listening skills in English?	4.33	0.58	Good
2. Does the teaching content provide opportunities for students to practice speaking in English?	4.67	0.58	Excellent
3. Does the teaching content include sufficient materials to enhance students' reading comprehension skills?	5.00	0.00	Excellent
4. Does the teaching content effectively guide students in improving their writing skills in English?	4.33	0.58	Good
5. Does the teaching content focus on improving students' ability to translate between English and their native language?	5.00	0.00	Excellent
6. Does the teaching content adequately cover vocabulary learning, including word usage and context?	5.00	0.00	Excellent
7. Does the teaching content provide clear instruction on sentence structure and grammar rules?	5.00	0.00	Excellent
8. Does the teaching content include materials or activities that help students understand cultural differences in cross-cultural	4.67	0.58	Excellent

communication?				
9. Does the teaching content encourage students to apply English grammar rules in practical communication scenarios?	4.33	0.58	Good	
10. Does the teaching content include idiomatic expressions or phrasal verbs to support students' understanding of natural English usage?	5.00	0.00	Excellent	
Total		4.73	0.29	Excellent

From table 2, the blended teaching using learning platform in college English education under influence of AI as having good quality in term of content, with an average score of 4.73.

Results of comparing students' knowledge of blended teaching using a learning platform in college English education under the influence of AI.

Table 3 Compares students' knowledge of blended teaching using a learning platform in college English education under the influence of AI.

Items	n	Total	\bar{X}	SD.	t-test	Sig. (2-tailed)
Pre-test	35	100	39.00	17.22		
Post-test	35	100	87.00	14.13	4.44	0.00

**p< .05

From table 3, students who learned the blended teaching using learning platform in college English education under influence of AI as reflected in an average pre-test score of 39.00 points and a higher average post-test score of 87.00 points. This increase in scores from pre-test to post-test was statistically significant at the .05 level.

Results of the study satisfaction of students who study blended teaching using a learning platform in college English education under the influence of AI.

Table 4 The satisfaction of students who study blended teaching using a learning platform in college English education under the influence of AI

Option	\bar{X}	SD.	Meaning
1. The overall effect of the blended teaching mode in College English is satisfactory.	4.91	0.40	Highest
2. The combination of AI and the Xuexitong platform in teaching is helpful for understanding the content of "Advanced College English Comprehensive Course 2".	4.89	0.40	Highest
3. The teaching resources (such as e-books, videos, exercises) on the Xuexitong platform for Unit 1 "Working Holiday Abroad", Unit 2 "Consumption" and Unit 3 "Cultural Difference" meet my needs.	4.94	0.23	Highest
4. The Xuexitong platform can effectively promote interaction and communication in the process of blended teaching.	4.94	0.23	Highest
5. I actively use AI-assisted learning functions (such as intelligent tutoring, speech correction) on the Xuexitong platform.	4.94	0.23	Highest
6. I am satisfied with the teacher's teaching guidance and feedback in the blended teaching mode.	4.91	0.37	Highest
7. The blended teaching mode has improved my English learning ability and performance.	4.94	0.23	Highest
8. The difficulty level of the course content in the blended teaching of these three units is appropriate.	4.94	0.23	Highest
9. I am willing to continue to use the blended teaching mode with the Xuexitong platform and AI assistance in the future.	4.94	0.23	Highest
10. The blended teaching mode using the Xuexitong platform and AI in College English is consistent with my learning expectations.	4.94	0.23	Highest
Total	4.87	0.35	Highest

From table 4, students were highly satisfied with the blended teaching using learning platform in college English education under influence of AI, with an average satisfaction score of 4.87, representing the highest level of

satisfaction.

CONCLUSION AND DISCUSSIONS

Conclusion

- 1) The blended teaching using learning platform in college English education under influence of AI as having good quality in term of media, with an average score of 4.47, and excellent quality in term of content, with an average score of 4.73;
- 2) Students who learned the blended teaching using learning platform in college English education under influence of AI as reflected in an average pre-test score of 39.00 points and a higher average post-test score of 87.00 points. This increase in scores from pre-test to post-test was statistically significant at the .05 level;
- 3) Students were highly satisfied with the blended teaching using learning platform in college English education under influence of AI, with an average satisfaction score of 4.87, representing the highest level of satisfaction.

Discussions

- 1) This research confirms the high efficacy of blended teaching using learning platform in college English education under influence of AI, as evidenced by substantial expert evaluations (average ratings >4.4) and significant student progress (scores rising from 39 to 87). The platform excelled in visual design, interactivity, and content quality, effectively fostering English proficiency development. These findings are consistent with the findings of Jiang et al. (2021), who reported similar advantages of blended teaching in English listening, and Wang (2023), who emphasized AI's contribution in enabling personalized and efficient learning.
- 2) Expert Evaluations and student outcomes indicate that the platform's strengths in visual appeal, interactivity, and AI-driven features (e.g., intelligent tutoring and speech correction) significantly enhanced engagement and academic performance. These findings resonate with Syakur et al. (2020), who emphasized the significance of multimedia and interactive components, and with Wang (2021) and Jiang et al. (2021), who demonstrated substantial improvements in oral and comprehensive English skills through blended and AI-supported methods.
- 3) Student satisfaction with the blended learning was exceptionally high (average score 4.87), reflecting strong approval of its content, interactivity, and AI features. This in agreement with Wang (2021), who found that AI assistance increased motivation and engagement, and with Yang et al. (2022), who emphasized the importance of well-designed learning environments. Collectively, the results emphasize that thoughtful technology integration and user experience design are vital in improving student satisfaction and learning effectiveness.

RECOMMENDATIONS

To enhance the platform, it is recommended to incorporate innovative and interactive elements such as gamification and virtual reality to improve students' engagement. Instructional content ought to be strengthened with a greater focus on grammar, vocabulary, and cultural contextualization, and updated frequently based on language teaching research. Teaching strategies should be refined through ongoing feedback to develop personalized learning pathways. For future research, the emphasis should be on developing systematic evaluation mechanisms to track outcomes and satisfaction, as well as identifying best practices to support broader adoption through inter-institutional collaboration.

REFERENCES

Alam, A., & Mohanty, A. (2022, December). Predicting students' performance employing educational data mining techniques, machine learning, and learning analytics. In International Conference on Communication, Networks and Computing, (pp. 166-177). Cham: Springer Nature Switzerland.

Al-Fraihat, D., Joy, M., Sinclair, J., & Davis, R. (2020). Evaluating e-learning systems success: An empirical study. *Computers in Human Behavior*. 102, 67-86.

Berzosa, A., Bernaldo, M. O., & Fernández-Sánchez, G. (2017). Sustainability assessment tools for higher education: An empirical comparative analysis. *Journal of Cleaner Production*. 161, 812-820.

Caner, M. (2010). A Blended Learning Model for Teaching Practice Course. *Turkish Online Journal of Distance Education*. 11(3), 78-97.

Chen, J. (2020). Application of Blended Teaching Mode Based on "Xuexitong" in Higher Vocational English courses. *Innovation and Practice of Teaching Methods*. (09).

Dai, Y., Chai, C. S., Lin, P. Y., Jong, M. S. Y., Guo, Y., & Qin, J. (2020). Promoting students' well-being by developing their readiness for the artificial intelligence age. *Sustainability*. 12(16), 6597.

Dong, Z.H. (2024). Research on the application of artificial intelligence technology in education. *China Educational Technology & Equipment*. (14), 41-43.

Ellis, R., Skehan, P., Li, S., Shintani, N., & Lambert, C. (2020). Task-based language teaching: Theory and practice. Cambridge University Press.

Gan, X., Li, Z. S. & Wang, M.Q. (2021). Investigating Foreign Languages Online Teaching Paradigm in the Context of Prevention and Control of the Pandemic. *China Educational Technology*. (03), 19-23+3.

He, W., Xu, G., & Kruck, S. E. (2021). Online learning platforms and student engagement: A case study. *Journal of Educational Computing Research*. 59(3), 642-661.

Hew, K. F., Jia, C., Gonda, D. E., & Bai, S. (2020). Transitioning to the “new normal” of learning in unpredictable times: Pedagogical practices and learning performance in fully online flipped classrooms. *International Journal of Educational Technology in Higher Education*. 17(1), 1-22.

Jiang, Y., Chen, Y., Lu, J., & Wang, Y. (2021). The effect of the online and offline blended teaching mode on English as a foreign language learners’ listening performance in a Chinese context. *Frontiers in psychology*, 12, 742742.

Khan, M. A., Vivek, S., Nabi, M. K., & Khojah, M. (2021). Students’ perception towards e-learning during COVID-19 pandemic in India: An empirical study. *Sustainability*. 13(1), 57.

Knox, J. (2020). Artificial intelligence and education in China. *Learning, Media and Technology*. 45(3), 298-311.

Krishnan, I. A., Ching, H. S., Ramalingam, S., Maruthai, E., Kandasamy, P., De Mello, G., ... & Ling, W. W. (2020). Challenges of learning English in 21st century: Online vs. traditional during Covid-19. *Malaysian Journal of Social Sciences and Humanities (MJSSH)*. 5(9), 1-15.

Li, H.M. & Yang, G. (2022). Platform Thinking: The Practice and Insights of Online English Teaching in Universities. *China Educational Technology*. (11), 123-128.

Lu, W.H. (2019). Connotation, Function and Implementation Path of Intelligent Adaptive Learning Platform in the View of AI+5G: Based on the Construction of Intelligent Seamless Learning Environment. *Journal of Distance Education*. (03), 38-46.

Maier, U., & Klotz, C. (2022). Personalized feedback in digital learning environments: Classification framework and literature review. *Computers and Education: Artificial Intelligence*. 3, 100080.

Mushthoza, D., Syariatin, N., Tahalele, O., Telussa, S., Rasmita, R., & Mokodenseho, S. (2023). Analyzing The Impact Of Artificial Intelligence (AI) On The Future Of English Language Teaching And Learning. *Journal on Education*. 6(1), 1549-1557.

Schunk, D. H., Meece, J. L., & Pintrich, P. R. (2020). Motivation in education: Theory, research, and applications (5th ed.). New Jersey: Pearson.

Sharma, D., Sood, A. K., Darius, P. S., Gundabattini, E., Darius Gnanaraj, S., & Joseph Jeyapaul, A. (2022). A study on the online-offline and blended learning methods. *Journal of The Institution of Engineers (India): Series B*, 103(4), 1373-1382.

Syakur, A., Fanani, Z., & Ahmadi, R. (2020). The effectiveness of reading English learning process based on blended learning through “Absyak” website media in higher education. *Budapest International Research and Critics in Linguistics and Education (BirLE) Journal*, 3(2), 763-772.

Ursavaş, Ö. F. (2022). Conducting Technology Acceptance Research in Education: Theory, Models, Implementation, and Analysis. (pp. 93-110). Cham: Springer International Publishing.

Wang, W.Y., Wang, H.X., & Chen H. (2018). Constructing a School-Based, Individualized College English Curriculum. *Foreign Languages in China*. (04), 18-26.

Wang, C. (2021). Employing blended learning to enhance learners’ English conversation: A preliminary study of teaching with Hitutor. *Education and Information Technologies*, 26(2), 2407-2425.

Yang, X., Zhou, X., & Hu, J. (2022). Students’ preferences for seating arrangements and their engagement in cooperative learning activities in college English blended learning classrooms in higher education. *Higher Education Research & Development*, 41(4), 1356-1371.

The Unseen Observer: The Psychology of Silent Following in Social Media Culture

Ferhat Atik, PhD

Faculty of Communication, Girne American University, TRNC

Email: ferhatatik@me.com

ORCID: 0000-0008-9089-9051

ABSTRACT

The digital age has created a new social arena in which identity and existence are defined through visibility. Social media platforms offer individuals opportunities for recognition and validation, yet they also foster a vast population of users who choose to remain silent. The phenomenon known as lurking describes users who observe online content without active participation. Behind this seemingly passive behavior lies a complex web of psychological, social, and cultural dynamics: curiosity, fear of exclusion, social comparison, the pressure of visibility, and the need for privacy are among the central motives shaping it. This study examines the phenomenon of silent following through three theoretical lenses: Eva Illouz's notion of emotional capitalism, Vamik Volkan's theory of large-group identity, and Byung-Chul Han's critique of the transparency society. These perspectives reveal that digital interactions are not purely technological but also deeply emotional and ideological in nature. The silent observer stands at the intersection of desire and restraint - simultaneously a watcher and the watched, a participant who communicates through absence rather than presence. The primary aim of this paper is to demonstrate that silent following should not be regarded as a lack of communication but as an alternative communicative strategy. In an environment saturated with exposure, silence becomes a form of agency - a subtle expression of control, resistance, and emotional self-preservation. Ultimately, the culture of silent following redefines what it means to "exist" online, suggesting that invisibility can be as powerful and communicatively meaningful as visibility itself.

Keywords: social media, lurking, digital identity, emotional capitalism, visibility culture, privacy, communication

1. INTRODUCTION

The digital age has radically transformed how people communicate, build relationships, and construct identity. Individuals today do not simply speak or write to express themselves - they make their existence visible. Social media has become the stage upon which people present their curated selves. Every photo, comment, and shared story forms part of a personal narrative. Yet beneath this flood of visibility lies a vast field of silence: the quiet observers who exist within digital interaction by watching rather than acting.

This study begins with an inquiry into the communicative and psychological significance of that invisible crowd. In the digital realm, existence is no longer confined to exchanges of information, conversation, or visibility; observation, watching, and silence have also become forms of being. The silent follower is a quiet yet omniscient figure on the social stage - both observer and participant, simultaneously inside and outside. This paradoxical position introduces a new tension into modern digital identity: Can I exist without being seen? Psychologically, silent following satisfies both curiosity and self-protection. Individuals gather knowledge about their social surroundings while preserving emotional boundaries. In this way, they sustain social bonds without surrendering their privacy. From a sociological standpoint, this behavior represents a micro-resistance to the culture of visibility. Even when people resist the imperative to "be visible, share, participate," they do not step outside the system; paradoxically, they become part of its most visible structure.

The communicative importance of silent following lies precisely here: in a world obsessed with visibility, invisibility is no longer a lack of communication but an alternative strategy of it. To observe can sometimes speak louder than to comment. Silence may also be seen as a form of digital minimalism - a way of managing emotional energy without sacrificing it to social expectation. Accordingly, this study approaches the phenomenon through three analytical dimensions: psychological (inner motives and emotional strategies), sociocultural (its relation to visibility economies, digital surveillance, and belonging), and ethical (the moral weight of silence). It asks: What psychological needs does silent following fulfill? Can online silence be understood as a new form of social belonging? Does it represent resistance to visibility culture or submission to emotional capitalism?

These questions illuminate the communication paradox of the digital era: while visibility is celebrated as freedom, invisibility has become a form of protection. As Byung-Chul Han notes, “In a transparent society, everything is visible, yet nothing is truly seen.” Under this tyranny of transparency, silent followers use invisibility as their shield.

The study thus treats silent following not merely as a personal choice but as a cultural symptom. Just as people once showed reverence for knowledge by reading quietly in libraries, today they secure their presence by moving silently within digital crowds. This silence is not isolation - it may be a way of restoring balance in an overwhelmingly noisy world. Ultimately, the silent follower reflects both the structure of social media and the condition of modern humanity: a figure who connects without speaking, exists without appearing, and communicates through silence.

2. THEORETICAL FRAMEWORK

2.1. Emotional Capitalism and Silent Following

Eva Illouz (2007) argues that in contemporary societies emotions are regulated by economic and cultural values - a condition she calls emotional capitalism. People no longer circulate only ideas but also their emotional experiences within a market logic. Social media amplifies this process: likes, comments, reposts, and view counts serve as the commodified indicators of feeling.

Within this context, silent following appears to stand outside emotional exchange, yet it is deeply embedded within it. The silent follower, who observes without liking or commenting, is the invisible consumer of emotional economy. Their passivity often functions as a strategy to maintain emotional distance or as a reflex of self-protection from overexposure. As Illouz points out, emotions are no longer “free”; they are governed by cultural codes and digital metrics. Silent following, therefore, can be seen as a micro-form of resistance - existence without emotional display.

2.2. Group Identity and Belonging through Observation

Vamik Volkan’s theory of large-group identity posits that individuals define themselves not only by personal traits but also by emotional attachment to collective entities. Social media has become one of the most dynamic arenas for the formation of these identities. Even without visible engagement, silent followers remain emotionally connected to the groups they observe. By following, they symbolically join.

To follow a political figure, a social movement, or a cultural influencer often means participating without participating. Volkan suggests that such individuals share in the group’s emotional boundaries. Silent following thus constitutes a digital form of belonging based on emotional identification rather than visible interaction. It provides both psychological safety and a sense of inclusion—though this participation remains unseen.

2.3. The Transparency Society and the Power of Invisibility

Byung-Chul Han (2012) argues that contemporary life is dominated by an ideology of transparency. While transparency promises freedom, it actually creates a regime of surveillance in which individuals are constantly observed and measured. Social media is the epicenter of this regime. In a world where everything is shareable and quantifiable, silence becomes an act of existential sabotage.

Silent following, in this sense, is an invisibility strategy against the cult of transparency. Han (2012) argues that compelled self-exposure can erode the subject rather than secure recognition. The silent follower, conversely, sustains existence through quietude. This paradox introduces a new ethical tension in digital life: in a world where visibility no longer guarantees authenticity, silence becomes the last form of autonomy.

At the intersection of these three theoretical approaches, silent following emerges not merely as an individual act but as a cultural symptom. People now communicate through observation and shape their identities through silence.

3. ANALYSIS AND DISCUSSION

3.1. Psychological Dynamics: Curiosity, Comparison, and Emotional Safety

The main emotions driving silent following arise from the tension between the desire to be seen and the need to remain unseen. Curiosity is its core impulse - people collect information about others’ lives to recalibrate their own sense of self. Social psychology calls this social comparison (Festinger, 1954). By observing others, the silent follower unconsciously reconstructs identity. The decision to watch rather than participate often serves as a strategy to preserve emotional safety. This recalls Freud’s notion of libidinal energy conservation: rather than

investing emotional energy outwardly, the individual turns it inward. Silent following, therefore, is not passive but deliberate - an act of self-preservation disguised as withdrawal.

3.2. Sociocultural Dimension: Digital Surveillance and New Forms of Belonging

Social media operates like a digital version of Michel Foucault's panopticon: everyone observes everyone, yet no one knows exactly who is observing whom. Constant visibility compels self-regulation. Silent followers move in the shadows of this panoptic system - unseen prisoners who nonetheless belong to it.

This condition transforms the meaning of belonging. In traditional communities, belonging required active participation; in the digital world, observation-based participation has become a new identity form. By continuously monitoring a group's content, individuals may feel emotionally part of it without engaging directly. This behavior echoes Volkan's concept of emotional investment. Silent following becomes the invisible extension of collective affect.

3.3. Ethical Tension: Visibility, Privacy, and Digital Conscience

Silent following rests on an ethical paradox. On one hand, it expresses the human right to privacy - the right to observe without being forced to interact. On the other hand, constant observation produces asymmetric power relations within digital communication. The invisible follower inadvertently becomes a subject of surveillance - the reverse face of Han's (2012) a coercive transparency regime. While everyone is expected to be visible, some reclaim power through silence.

The ethical dilemma can be phrased as follows: Can I exist without being seen, or is visibility a prerequisite for existence? In the digital age, visibility is no longer a right but an obligation. Silent following becomes an unconscious rebellion against that obligation - an attempt to preserve digital conscience through invisibility.

3.4. The New Language of Silence: Communication through Absence

In the age of transparency, silence is often mistaken for a lack of communication, yet it is anything but. Silence speaks. Anthropologist Edward T. Hall (1976) emphasized that in many cultures, nonverbal signals convey meaning more effectively than speech. Silent following functions as a form of nonverbal communication. Even without reacting or commenting, one's act of observation signals presence. This quiet engagement may express implicit agreement, empathy, or emotional distance.

Such silent communication weaves an invisible social network - millions of users following one another without uttering a word. This does not merely signify existential loneliness; it may represent a new form of collective quietude. The deepest dialogues of the digital age, perhaps, are those conducted without words.

3.5. Educational Technology and Online Learning: Lurking as Vicarious Participation

While "silent following" is typically discussed in relation to social media, the same logic operates in educational technology environments: learning management systems, online discussion boards, MOOCs, and professional learning networks. In these spaces, observation is often a legitimate entry point into participation rather than a deficit. Bandura's social learning theory emphasizes that people learn not only by doing but by observing models and anticipating social consequences; online settings amplify that mechanism because the costs of "speaking" can be permanent, searchable, and publicly judged. (Bandura, 1977).

From the perspective of communities of practice, this observational stance resembles legitimate peripheral participation: newcomers belong by watching the norms of a group, gradually moving toward fuller participation as competence and trust grow. (Lave & Wenger, 1991). In this sense, "lurking" can be reframed as an apprenticeship of discourse, not disengagement. However, educational platforms also introduce a specific pressure that consumer social media does not: participation is frequently assessed. When visibility becomes a grading criterion, silence can be misread as failure rather than a temporary learning strategy. This misreading disproportionately affects learners with language anxiety, first-generation academic trajectories, or previous experiences of public shaming in digital spaces.

Accordingly, a direct implication for educational technology is to distinguish between non-participation and low-visibility participation. Reading, revisiting materials, and tracking peer exchange may represent meaningful cognitive and affective engagement even when the learner does not post. Course design and learning analytics that treat "no posts" as "no learning" risk misclassifying a significant category of students and reproducing inequities for those who learn through observation.

3.6. Applied Platform Examples: Instagram, TikTok, and X

To concretize the argument, consider three brief platform-level vignettes. First, Instagram Stories and profile viewing create a regime of soft traceability: users can follow daily life at intimate proximity while maintaining plausible deniability through non-interaction. A silent follower may watch Stories repeatedly to remain socially informed (and emotionally attached) without triggering relational obligations such as replying, reacting, or revealing presence through public comments.

Second, TikTok's "For You" feed normalizes anonymous consumption through algorithmic curation. Here, silent following is not merely an individual choice; it is structurally encouraged. Users learn cultural codes, trends, and micro-languages by watching, often postponing visible self-expression until they can perform the platform's aesthetic grammar competently. Silence functions as rehearsal.

Third, on X (formerly Twitter), polarized conversation and quote-tweet dynamics increase the perceived risk of exposure. In such climates, silent following can become a rational strategy for information-gathering without identity cost. The user remains politically and socially connected while avoiding the reputational volatility of public speech. Across these platforms, the same psychological mechanism appears: observation provides belonging and knowledge, while silence protects the self from the sanctions of visibility.

3.7. Engaging Counter-Positions: Disengagement, Free-Riding, and Ethical Risk

A robust interpretation of silent following must also take seriously competing views. One line of critique frames lurking as disengagement: a user benefits from collective content without reciprocating, thereby weakening community vitality and reducing the diversity of voices available to the group. Another emphasizes ethical risk: silent observation can enable harassment, parasocial monitoring, or data extraction, especially when it targets vulnerable users. These critiques matter because they mark the boundary between protective privacy and asymmetric surveillance.

The present conceptual framework does not romanticize silence. Rather, it argues that silent following is ethically ambivalent and context dependent. In educational communities, for example, sustained lurking can reduce peer-to-peer knowledge building if it becomes a permanent stance; in activist or at-risk communities, silent following may be vital for safety; in celebrity or influencer cultures, it can slide into voyeuristic monitoring. The analytic task is therefore not to judge silence as inherently good or bad, but to identify the conditions under which it functions as autonomy, as avoidance, or as domination. That distinction is crucial for both platform governance and for digital pedagogy that seeks inclusion without coercive exposure.

4. CONCLUSION AND EVALUATION

4.1. Key Findings

This conceptual analysis advances three integrated findings. First, silent following should be treated as a communicative strategy rather than a communicative absence. In visibility-saturated platforms, withholding interaction can function as agency: an individual manages exposure, regulates emotional labor, and preserves boundaries while remaining socially connected. Second, silence is structurally produced as much as it is personally chosen. Platform architectures—metrics, comment cultures, algorithmic ranking, and public permanence—raise the perceived costs of speaking and normalize observational participation. Third, silent following is ethically ambivalent: it can protect privacy and emotional self-preservation, yet it can also reproduce asymmetric power relations when observation becomes monitoring.

These claims align with, and extend, prior research on "lurking" in online communities. Empirical studies of discussion forums and online groups have shown that non-posting users may still report learning, information gain, and a sense of belonging through reading and tracking exchanges (Dennen, 2008; Nonnecke & Preece, 2000, 2001). The present paper contributes by linking that empirical insight to a broader theory of visibility economies and emotional governance, positioning silent following as a culturally patterned response to transparency pressure rather than a purely individual preference.

4.2. Implications for Educational Technology

For TOJET's readership, the implications are direct. Online learning spaces often equate participation with posting, yet silent learners may be cognitively active and socially attuned while remaining publicly quiet. Course design can reduce the punitive dimension of visibility by offering multiple participation pathways: reflective journals, low-stakes micro-responses, anonymous Q&A channels, or structured "read-and-summarize" roles that legitimate observational engagement. Learning analytics and assessment strategies should therefore differentiate between absence (no access) and silent presence (access with observational engagement), avoiding simplistic inferences from posting counts alone.

4.3. Limitations

This manuscript is conceptual and does not report original empirical data. Accordingly, its claims are interpretive and intended to generate testable propositions rather than causal conclusions. Silent following is also a heterogeneous category: motivations differ by platform (e.g., Instagram versus X), by relationship context (friends, influencers, institutions), and by cultural norms around privacy and self-disclosure. Finally, the ethical evaluation of silence depends on power asymmetries: what counts as self-protection for one user may feel like surveillance to another. These limitations delimit the scope of the argument and indicate where empirical validation is required.

4.4. Future Research

Future studies can operationalize silent following across educational and social platforms by combining digital trace data (views, dwell time, revisits) with qualitative interviews on motivation and emotional cost. Comparative work across cultures and age groups would clarify how privacy norms and large-group identifications shape the choice to remain silent. Finally, the role of AI-driven recommendation systems deserves focused attention: algorithmic feeds not only interpret silent behavior but also amplify it by rewarding consumption patterns, thereby influencing both what learners see and what they choose not to say.

REFERENCES

Ananny, M., & Crawford, K. (2018). Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability. *New Media & Society*, 20(3), 973–989.

Bandura, A. (1977). *Social learning theory*. Englewood Cliffs, NJ: Prentice-Hall.

Bauman, Z. (2013). *Liquid surveillance: A conversation*. Cambridge, England: Polity Press.

boyd, d. (2014). *It's complicated: The social lives of networked teens*. New Haven, CT: Yale University Press.

Castells, M. (2010). *The rise of the network society*. Oxford, England: Blackwell.

Couldry, N., & Hepp, A. (2017). *The mediated construction of reality*. Cambridge, England: Polity Press.

Dennen, V. P. (2008). Pedagogical lurking: Student engagement in non-posting discussion behavior. *Computers in Human Behavior*, 24(4), 1624–1633. <https://doi.org/10.1016/j.chb.2007.06.003>

Festinger, L. (1954). A theory of social comparison processes. *Human Relations*, 7(2), 117–140.

Foucault, M. (1995). *Discipline and punish: The birth of the prison*. New York, NY: Vintage Books.

Hall, E. T. (1976). *Beyond culture*. New York, NY: Anchor Books.

Han, B.-C. (2012). *The transparency society*. Stanford, CA: Stanford University Press.

Illouz, E. (2007). *Cold intimacies: The making of emotional capitalism*. Cambridge, England: Polity Press.

Lave, J., & Wenger, E. (1991). *Situated learning: Legitimate peripheral participation*. Cambridge, England: Cambridge University Press.

Marwick, A. E. (2013). *Status update: Celebrity, publicity, and branding in the social media age*. New Haven, CT: Yale University Press.

Nonnecke, B., & Preece, J. (2000). Lurker demographics: Counting the silent. In *Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI '00)* (pp. 73–80). ACM. <https://doi.org/10.1145/332040.332409>

Nonnecke, B., & Preece, J. (2001). Why lurkers lurk. In *Proceedings of the Seventh Americas Conference on Information Systems (AMCIS 2001)* (Paper 294). Association for Information Systems. <https://aisel.aisnet.org/amcis2001/294>

Turkle, S. (2011). *Alone together: Why we expect more from technology and less from each other*. New York, NY: Basic Books.

Volkan, V. D. (1999). *Bloodlines: From ethnic pride to ethnic terrorism*. New York, NY: Farrar, Straus and Giroux.

Wise, A. F., Zhao, Y., & Hausknecht, S. N. (2014). Learning analytics for online discussions: Embedded and extracted approaches. *Journal of Learning Analytics*, 1(2), 48–71. <https://doi.org/10.18608/jla.2014.12.4>

Žižek, S. (2017). *Like a thief in broad daylight: Power in the era of post-human capitalism*. London, England: Penguin.

Zuboff, S. (2019). *The age of surveillance capitalism: The fight for a human future at the new frontier of power*. New York, NY: PublicAffairs.

Understanding How Generative AI Cultivates Self-Directed Learning Capabilities: A Perspective Based on Digital Technology Evolution

Guo Shouchao^a, Xu Ningjie^b, Xu Zhenguo^{*}

a Qufu Normal University, Rizhao, Shandong, China, guosc@qfnu.edu.cn, 0000-0002-0168-899x

b Qufu Normal University, Rizhao, Shandong, China, 1361527388@qq.com, 0009-0003-0818-9688

c Qufu Normal University, Rizhao, Shandong, China, qfnuxzg@qfnu.edu.cn, 0000-0002-9961-7021

Abstract

The use of digital technologies to support student learning has become a trend in the field of education. However, whether digital technologies can effectively facilitate students' self-directed learning remains a topic of debate in academia. This study employs a meta-analytic approach to examine the effectiveness of digital technologies in promoting self-directed learning among students, while exploring the influence of different moderating variables. A total of 27 articles (including 30 independent studies with 3,711 participants) met the inclusion criteria. The results indicate that digital technologies significantly enhance students' self-directed learning, demonstrating a moderate effect size (Hedges's $g = 0.778$, 95% CI: 0.510–0.847, $p < 0.05$). Among the moderating variables, the type of digital technology and teaching size showed significant effects, whereas educational stage, subject area, and intervention duration did not exhibit significant moderating effects. Based on the findings, recommendations are proposed regarding the selection of digital technology types, adjustments to teaching size and intervention duration, and targeted considerations for educational level and subject area. This study provides a theoretical foundation and empirical evidence for the scientific application of digital technologies, the cultivation of self-directed learning, and the formulation of educational technology policies.

Keywords: digital technologies, meta-analytic, self-directed learning

1 INTROUCTION

As online education opportunities expand and digital technologies such as artificial intelligence (AI) advance rapidly, self-directed learning (SDL) has emerged as a fundamental skill for individuals to adapt and succeed in the digital era(Morris, 2019) . This shift has also established SDL as an indispensable component of contemporary education(Aulakh et al., 2025) . SDL emphasizes learners' ability to proactively set goals, select strategies, monitor progress, and evaluate outcomes, monitor progress, and evaluate outcomes. In the digital era characterized by rapid knowledge iteration, the significance of SDL has become even more pronounced(Gaol & Prasolova-Førland, 2022). SDL can cultivate students' self-awareness, goal orientation, and sense of mastery during the learning process. These competencies enhance learners' motivation, engagement, and confidence in digital learning environments(Morrison & McCutheon, 2019). Meanwhile, the explosive development of digital technologies - from mobile learning platforms to virtual reality systems and today's generative artificial intelligence - has provided learners with unprecedented learning resources and educational experiences(Gaol & Prasolova-Førland, 2022). Currently, a growing number of educators are integrating digital tools into traditional instructional environments and developing innovative teaching models(Morrison & McCutheon, 2019).

However, the actual efficacy of applying digital technologies to foster students' SDL remains debated. One view is that digital technology can facilitate the development of students' SDL(Lingling, 2024; Rashed Ibraheam Almohesh, 2024). But another view suggests that the role of digital technology in cultivating students' SDL is negligible or even nonexistent(Lee, 2024; Yeh et al., 2022). Existing studies have inconsistent conclusions findings due to differences in samples and technological tools, etc. Therefore, there is a need to integrate existing evidence through meta-analysis to quantify the overall effect of digital technology on SDL and explore key moderating variables to compensate for the limitations of single studies.

Therefore, this study aims to comprehensively evaluate the impact of digital technology on students' SDL through a meta-analysis approach and investigated whether educational stage, subject area, digital technology type, intervention duration, and teaching size moderated the impact of digital technology on students' SDL. This study can provide a theoretical basis and empirical evidence for the scientific application of digital technology, the cultivation of SDL and the development of educational technology policies.

2 LITERATURE REVIEW

2.1 Self-directed learning and digital technology

So far, there is no unified and clear definition of SDL. Based on previous research, perspectives on SDL can be broadly categorized into the capability view and the process view. From the perspective of ability, self-directed learners are able to initiate learning on their own and sustain it independently. Self-directed learners also possess the capacity for self-training, a strong desire for learning, and confidence in their learning abilities. Self-directed learners can apply fundamental learning techniques and strategies, organize appropriate learning steps, and formulate as well as execute learning plans accordingly(Guglielmino, 1977). SDL represents a capability that is particularly crucial for successful living and working in the modern world, offering learners a heightened level of adaptability to constantly changing social and environmental conditions(Jossberger et al., 2010). In addition, from the perspective of process, SDL is a process in which individuals actively, with or without the help of others, judge their own learning needs, formulate learning objectives, determine learning resources, choose learning strategies, implement learning activities, and evaluate learning outcomes(Knowles, 1975). In this process, learners are responsible for controlling their own learning objectives and means to meet the perceived needs of personal goals or the personal environment(Morris, 2019).

Based on the background and requirements of this study, SDL is regarded as a capability in this research. Self-directed learners are capable of autonomous planning, resource integration, strategy selection, and self-evaluation. That is, learners possess the ability to actively judge learning needs, independently set learning objectives, choose learning resources, carry out learning activities, and assess learning outcomes.

Although SDL emphasizes the autonomy and independence of learners, it does not mean that learners study in isolation or are completely cut off from the outside world. Although existing studies have shown that one of the basic elements to support and enhance SDL is assistance, especially the feedback provided by educators, this requires educators to spend a lot of time and energy(Stockdale & Brockett, 2011). The emergence of digital technology has brought great convenience to educators. With the advent of the digital era, the advantages of digital technology have become increasingly evident, especially in the field of education. Digital technologies such as information and communication technology, artificial intelligence, big data, and cloud computing have made the development of many new products in the field of education possible, including software, platforms, and devices(Tang et al., 2022). Digital technology is an open door to new learning methods and choices, which may be beneficial to the improvement of learners' abilities(Schneckenberg et al., 2011). Digital technology has the potential to support students in achieving self-direction, especially by combining SDL and technology to provide sufficient support(Morris & Rohs, 2023). From the development of digital technology to the present, there is a close relationship between the use of digital technology and SDL. SDL has been enhanced and facilitated through technologies such as Web2.0. Web2.0 provides learners with a convenient platform for critical reflection and interaction with social network agents(Anderson, 2007). In the modern world, the interactive functions of generative artificial intelligence (GenAI) encourage student engagement and active learning(Brown et al., 2020). The personalized functions of GenAI can be used to effectively provide tailored learning support(Gilson et al., 2023). The assessment function of GenAI is also capable of evaluating students' learning outcomes and providing feedback, which helps students identify their deficiencies(Chiang et al., 2024). Through these means, digital technology offers students important opportunities to improve their learning abilities and develop relevant skills.

Teaching supported by digital technology can enhance students' participation and enthusiasm in learning, improve their metacognitive and self-monitoring abilities, increase their focus and intrinsic motivation for learning, thereby promoting the development of SDL. For example, Lingling (2024) explored the impact of virtual simulation technology on students' SDL through a quasi-experimental study. The research found that, compared to the control group using traditional teaching methods, the experimental group supported by virtual simulation technology showed a significant improvement in SDL. Rashed Ibraheam Almohesh (2024) employed a quasi-experimental design to evaluate the impact of ChatGPT on the SDL of 250 primary school students from six schools in Riyadh, Saudi Arabia. The results indicated that students in the experimental group who utilized ChatGPT demonstrated higher levels of SDL, suggesting that digital technology plays a positive role in enhancing SDL.

The development of digital technology has sparked excitement while also raising concerns among some people. While digital technology provides numerous conveniences for learners, it may also weaken their basic learning abilities(Hedges, 1981). Excessive reliance on digital technology by learners can lead to a lack of critical thinking(Cooper, 2023) and hinder their independent thinking(Bozkurt et al., 2023). Additionally, when learners are subjected to monitoring through technologies such as data tracking, their anxiety levels may increase, which in turn affects the development of SDL. Although these technologies can enhance learners' short-term engagement, they undermine learners' long-term intrinsic motivation for learning, ultimately hindering the development of learners' SDL. For example, Yeh et al. (2022) investigated the impact of the e-STORY App on SDL among 77 nursing students using a quasi-experimental approach. The experimental results showed that there

was no significant improvement in SDL among the students who used the e-STORY App compared to those in the control group who received traditional teaching. Lee (2024) explored the effectiveness of using ChatGPT as a feedback tool for English job letter writing among 51 Korean university students in a business English course. Survey and interview data indicated that, although students generally expressed satisfaction with the feedback process, its impact on developing SDL was limited. Therefore, it is necessary to clearly explore the impact of digital technology on students' SDL.

2.2 Relevant studies

In recent years, researchers have conducted various reviews and meta-analyses to explore the application of digital technology in the field of education. For example, Zhang et al. (2022) conducted a meta-analysis to study the effectiveness of augmented reality technology in K-12 education for learning outcomes. The research results showed a large overall effect size ($g=0.919$), indicating that the use of augmented reality has a significant positive impact on the learning outcomes of K-12 students. Ma et al. (2024) employed a literature review method to study the learning effects of nursing undergraduates using digital technology in clinical education. The results indicated that the application of digital technology in clinical education is beneficial to the learning of nursing undergraduates. Sailer et al. (2024) conducted a systematic review of 25 meta-analyses that explored the impact of digital technology on teaching effectiveness. The results showed that the use of digital technology does not in itself change student learning outcomes in higher education. However, when digital technology provides support for specific learning activities, such as flipped classrooms and collaborative learning, learners' cognitive learning outcomes are improved.

In addition, some reviews and meta-analyses have begun to focus on the application of digital technology in cultivating students' specific learning abilities and thinking competencies. Fadda et al. (2022) carried out a meta-analysis to investigate the impact of digital games on the mathematical learning motivation of K-12 students. The research showed that compared with traditional teaching practices, digital games are effective tools in enhancing the mathematical learning motivation of K-12 students ($g=0.27$). Lan and Zhou (2025) utilized a literature review to explore the role of artificial intelligence applications in self-regulated learning among higher education students. The results demonstrated that artificial intelligence has the potential to promote the deliberate thinking, performance, and reflection phases of self-regulated learning. Seenivasan (2024) reviewed literature on the application of information and communication technology (ICT) in school education. He found that the use of ICT helps students access digital information and course content effectively and efficiently. ICT supports student-centered learning and the development of creative learning environments, providing more opportunities for critical thinking skills.

In general, most of the existing literature reviews and meta-analyses have only explored the impact of digital technology on dimensions related to SDL (such as learning motivation), and there is a lack of research on if digital technology supports the cultivation of SDL. Furthermore, the research is concentrated on specific subjects (such as mathematics, medicine) or educational levels (such as K-12, university). Moreover, previous meta-analyses also lacked research on moderating variables that may affect the impact of digital technology on SDL. Therefore, although previous studies have contributed to understanding the application of digital technology in education, there is still a lack of meta-analyses to comprehensively study the impact of digital technology on students' SDL. To fill these gaps, the main objectives of this study are to investigate the impact of digital technology on students' SDL and explore which variables moderate the effects of digital technology on students' SDL. This study aims to provide guidance and references for educators, teachers, researchers, and technology developers in their practices and research on using digital technology to support SDL. Specifically, the study proposes the following two questions:

RQ1: What is the overall effect of digital technology on students' SDL?

RQ2: What are the moderating variables that influence the effectiveness of digital technology on students' SDL?

3 METHOD

This study employs a meta-analysis approach to discuss the impact of digital technology on students' SDL, and adheres to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We utilized the Comprehensive Meta Analysis v.3 software for conducting the meta-analysis and adopted the Hedges' g value to calculate the effect size. According to Cohen's Hedges' g standard, 0.2 represents a small effect size, 0.5 indicates a moderate effect size, and 0.8 signifies a large effect size (Hedges, 1981).

3.1 Data sources and search strategies

This study utilized the Web of Science, Google Scholar, Springer, and Elsevier databases as the platforms for literature retrieval. Additional searches were conducted using the "citation search" method to ensure comprehensive coverage of the literature. The search was not restricted to any specific type of literature, but was limited to the timeframe after 2011. The search terms were divided into two groups. The first group of search terms included "Generative AI", "GenAI", "generative artificial intelligence", "LLM", "large language model", "ChatGPT", "chatbot", "digital technology", "educational technology", "technology", "web-based tool", "online platform", "mobile app", and other key terms related to digital technology. The second group of search terms was specifically limited to "SDL", "Self-directed learning". During the search, keywords within each group were connected using the Boolean operator "OR", while the two groups were combined using the Boolean operator "AND".

3.2 Inclusion and exclusion criteria

The criteria for literature selection included: (1)The research addressed the impact of digital technology on SDL; (2)The included literature must be experimental or quasi-experimental designs with comparisons between an experimental group and a control group, and single-group pretest-posttest studies are not included in the scope of this study; (3)The experimental group receives teaching supported by digital technology, while the control group receives traditional teaching; (4)The data in the literature must be complete, including means, standard deviations, sample sizes, etc. The specific screening process is shown in Fig. 1.

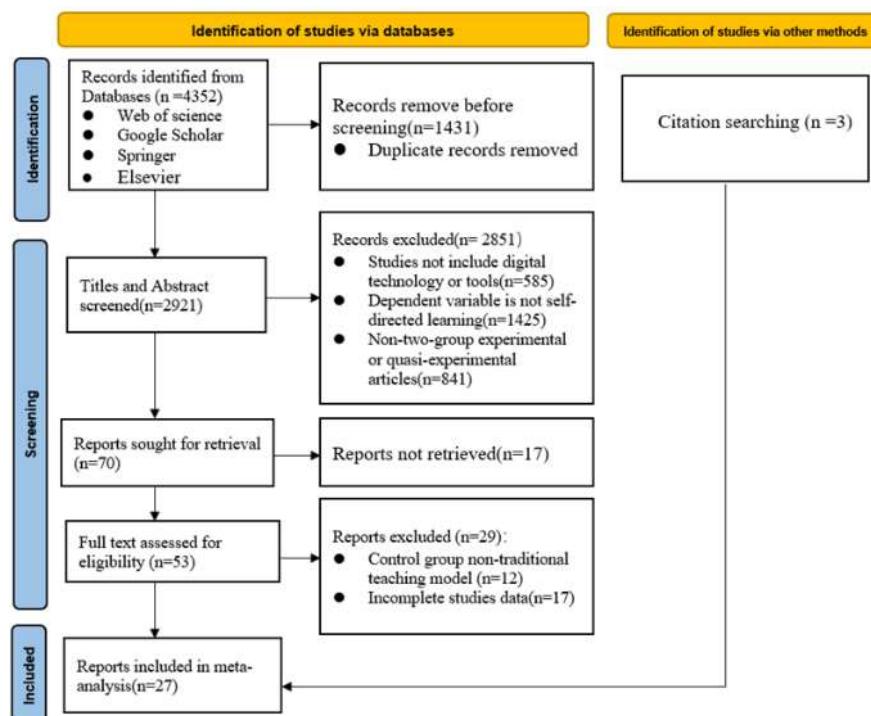


Fig. 1 Literature Search Flowchart

3.3 Coding procedures

The study not only extracted basic information from the included literature, such as article title, author(s), and year of publication, but also conducted characteristic value coding for 27 articles. The content of the characteristic value coding includes learner characteristics (education stage, subject area) and teaching characteristics (digital technology type, intervention duration, teaching size). A total of 27 articles were included in this study, among which some articles had multiple effect sizes. Therefore, there were ultimately 30 effect sizes available for meta-analysis. Two researchers independently coded all the studies separately, and the Cohen Kappa coefficient was 0.92, indicating that the coding results were valid(Cohen, 1968). After completing the coding process, the researchers discussed the disputed sections and reached a unified agreement. The specific results of the characteristic value coding are shown in TABLE 1. Initially, this study categorized digital technologies without AI involvement into two categories based on the literature included: content delivery type (i.e., digital technologies primarily for one-way knowledge transmission) and collaborative inquiry type (i.e., digital technologies that can sense user behavior and respond adaptively). In addition, AI as a transformative force(Xu & Ouyang, 2022), needs to be analyzed as an independent type of digital technology. Therefore, the study adds a

category for intelligent question-and-answer (i.e., digital technologies that rely on AI to provide dynamic responses to user inquiries and offer personalized solutions) for discussion. Therefore, the final classification of digital technology types is divided into three categories: intelligent question-and-answer, content delivery, and collaborative inquiry.

TABLE 1 Characteristic value coding

Variable	Category	Number of studies
Learner characteristics	1.Primary	6
	2.Secondary	4
	3.University	20
	1.Humanities and social sciences	14
	2.Medical science	13
	3.Industrial science	3
Technology type	1.Intelligent Question-and-Answer type	7
	2.Content delivery type	17
	3.Collaborative inquiry type	6
	1. 1~3 weeks	4
	2. 4~6 weeks	8
	3. 7~9 weeks	7
Teaching characteristics	4.More than 9 weeks	11
	1. 1~30	3
	2. 31~60	5
	3. 61~90	12
	4. More than 90	10

3.4 Publication bias

To ensure the validity of the research conclusions, a publication bias test was conducted based on 30 effect sizes before proceeding with the meta-analysis, resulting in the funnel plot shown in Fig. 2. As shown in Fig. 2, the 30 included effect sizes are relatively evenly distributed on both sides of the funnel plot, indicating that there may be no publication bias in the study. To further confirm the presence of publication bias, the study employed the Fail-Safe Number for examination. The results showed that the Fail-Safe Number was 3478, which was far greater than the permissible limit of $5k+10$ (where k is the number of effect sizes included in the analysis). In addition, the study also adopted the Egger linear regression test and the Begg rank correlation test to explore the issue of publication bias. The results showed that the p -value for the Egger linear regression test was 0.646, and the p -value for the Begg rank correlation test was 0.521, both of which were greater than 0.05. Therefore, there is no publication bias in the samples of this study, and meta-analysis can be carried out.

Funnel Plot of Standard Error by Std diff in means

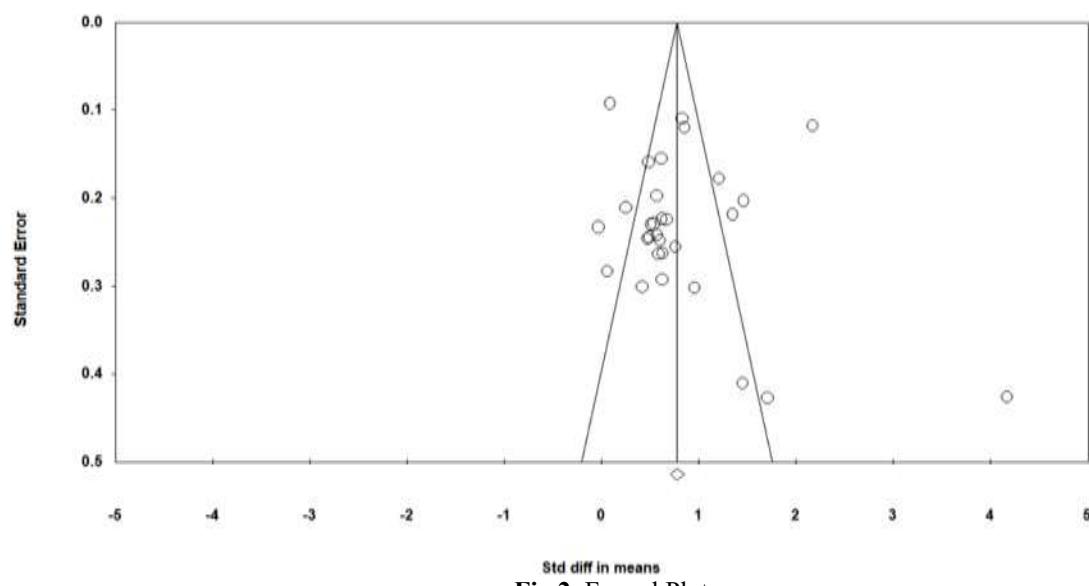


Fig 2. Funnel Plot

3.5 Heterogeneity analysis

Heterogeneity tests aim to explore the impact of individual differences on the dependent variable, with the purpose of examining whether different studies have integratability or consistency. This study utilized both fixed-effect and random-effect models to analyze the included literature. By referring to the statistical values of the Q test and I^2 test, the most appropriate model is determined to ensure the accuracy and reliability of the analysis results. The results of the heterogeneity test are shown in TABLE 2, where $Q=331.249$, $I^2=91.249\%$, and $p=0.000<0.1$, indicating the existence of heterogeneity among the studies. Therefore, to effectively address the differences in effect sizes between samples, this study adopted a random-effects model for analysis.

TABLE 2. OVERALL EFFECT SIZE

Model	N	Hedges 's g	95% confidence interval		Null test		Heterogeneity				I^2
			Lower limit	Upper limit	Z	P	Q- value	df (Q)	p	I^2	
Fixed	30	0.625	0.484	0.966	12.255	0.000	331.249	29	0.000	91.249	0.628
Random	30	0.778	0.510	0.847	6.717	0.000					

4 RESULT

4.1 The Overall Impact of Digital Technology on Self-Directed Learning

As shown in TABLE II, under the random-effect model, the overall effect size was 0.778 (95% CI: 0.510–0.847, $Z = 6.717$, $p < 0.05$), indicating that the overall impact of digital technology on students' SDL reached a moderate level. The 95% confidence interval of the random-effect model was [0.510, 0.847], which did not include 0, suggesting that the impact of digital technology on students' SDL was unlikely to be due to chance. In short, digital technology played a significant and relatively strong positive role in promoting students' SDL.

4.2 Moderator analysis findings

The study further examined the potential moderating effects of two categories of variables: learner characteristics and teaching characteristics. Learner characteristics included two variables: education stage and subject area, while teaching characteristics included three variables: technology type, intervention duration, and teaching size. Detailed data are shown in TABLE 3.

TABLE 3. Effect Size of Moderating Variables

Variables	Effect size and 95% CI				Null test		Group difference
	N	g	Lower	Upper	Z	P	
Educational stage							
1.Primary	6	0.875	0.541	1.209	5.130	0.000***	Q=0.662 P=0.718
2.Secondary	4	0.685	0.349	1.021	3.995	0.000***	
3.University	20	0.824	0.505	1.143	5.061	0.000***	
Subject area							
1.Humanities and social sciences	14	0.952	0.615	1.288	5.547	0.000***	Q=3.817 P=0.148
2.Medical science	13	0.760	0.345	1.175	3.591	0.000***	
3.Industrial science	3	0.554	0.327	0.781	4.792	0.000***	
Technology type							
1. Intelligent question-and-answer type	7	1.201	0.641	1.760	4.208	0.000***	Q=3.526 P=0.039*
2.Content delivery type	17	0.509	0.329	0.749	5.969	0.000***	
3.Collaborative inquiry type	6	0.852	0.101	1.605	2.222	0.026*	
Intervention duration							
1. 1~3 weeks	4	0.462	0.236	0.688	4.001	0.000***	Q=5.199 P=0.158
2. 4~6 weeks	8	1.055	0.248	1.863	2.561	0.000***	
3. 7~9 weeks	7	0.864	0.493	1.234	4.572	0.000***	
4.More than 9 weeks	11	0.768	0.380	1.156	3.882	0.000***	
Teaching size							

1. 1~30	3	1.574	0.994	2.154	5.322	0.000***	Q=10.631 P=0.014*
2. 31~60	5	0.897	0.486	1.308	4.278	0.000***	
3. 61~90	12	0.769	0.394	1.144	4.018	0.000***	
4. More than 90	10	0.524	0.240	0.808	3.612	0.000***	

*p <0.05, ***p <0.001

4.2.1 Educational stage

To explore the impact of digital technology on students' SDL across different educational stages, this study categorized the educational stages into primary school, secondary school, and university based on the included literature. The analysis revealed that digital technology had varying degrees of positive effects on students' SDL across these three educational stages. Specifically, digital technology demonstrated strong and statistically significant positive effects on SDL among primary school students ($g = 0.875$, $p < 0.05$) and university students ($g = 0.824$, $p < 0.05$). For secondary school students, the effect was moderate but still statistically significant ($g = 0.685$, $p < 0.05$). However, the overall differences in the effects of digital technology on SDL across the three educational stages were not statistically significant ($Q = 0.662$, $p = 0.718 > 0.05$). Therefore, educational stage did not significantly moderate the impact of digital technology on students' SDL.

4.2.2 Subject area

To investigate the impact of digital technology on students' SDL across different subject areas, this study classified the included literature into three categories: humanities and social sciences, medicine, and engineering. The analysis revealed varying degrees of positive effects of digital technology on students' SDL across these subject areas. Specifically, digital technology demonstrated a strong and statistically significant positive effect on SDL in humanities and social sciences ($g = 0.952$, $p < 0.05$). In medicine ($g = 0.760$, $p < 0.05$) and engineering ($g = 0.554$, $p < 0.05$), the effects were moderate yet still statistically significant. However, the overall differences in digital technology's effects on SDL across these three subject areas were not statistically significant ($Q = 3.817$, $p = 0.148 > 0.05$). Consequently, subject area did not serve as a significant moderator of digital technology's impact on students' SDL.

4.2.3 Technology type

To examine the impact of different types of digital technology on students' SDL, this study categorized the digital technologies into three types based on the included literature: content presentation, collaborative inquiry, and intelligent question-and-answer. All three types of digital technologies demonstrated positive effects on students' SDL, though to varying degrees. Specifically, intelligent question-and-answer ($g = 1.201$, $p < 0.05$) and collaborative inquiry ($g = 0.852$, $p < 0.05$) technologies showed strong and statistically significant positive effects on students' SDL. Content presentation technology ($g = 0.509$, $p < 0.05$) exhibited a moderate yet still statistically significant positive effect. Moreover, the overall differences in the effects among these three types of digital technologies were statistically significant ($Q = 0.278$, $p = 0.039 < 0.05$). Therefore, the type of digital technology significantly moderates its impact on students' SDL.

4.2.4 Intervention duration

To examine the impact of digital technology on students' SDL across different intervention durations, this study classified the intervention periods into four categories based on the included literature: 1-3 weeks, 4-6 weeks, 7-9 weeks, and more than 9 weeks. Digital technology demonstrated varying degrees of positive effects on students' SDL across these intervention periods. The analysis revealed statistically significant positive effects with varying effect sizes: strong effects were observed for interventions lasting 4-6 weeks ($g=1.005$, $p<0.05$) and 7-9 weeks ($g=0.864$, $p<0.05$), while moderate yet significant effects were found for shorter (1-3 weeks; $g=0.462$, $p<0.05$) and longer durations (more than 9 weeks; $g=0.768$, $p<0.05$). However, the overall analysis showed no statistically significant differences in digital technology's effects on students' SDL across different intervention durations ($Q=5.199$, $p>0.05$). Therefore, intervention duration did not significantly moderate the impact of digital technology on students' SDL.

4.2.5 Teaching size

To investigate the impact of digital technology on students' SDL under different teaching sizes, this study categorized teaching sizes into four groups based on the included literature: 1-30 participants, 31-60 participants, 61-90 participants, and more than 90 participants. Digital technology had a positive impact of varying degrees on students' SDL across these three teaching sizes. Specifically, in teaching sizes of 1-30 participants ($g=1.574$, $p<0.05$) and 31-60 participants ($g=0.897$, $p<0.05$), digital technology had a high significant positive impact on students' SDL. In teaching size of 61-90 participants ($g=0.769$, $p<0.05$) and more than 90 participants ($g=0.524$, $p<0.05$), digital technology had a moderate significant positive impact on students' SDL. Overall, there were significant differences in the impact of digital technology on students' SDL across different teaching scales

($Q=10.631$, $p=0.014 < 0.05$). Therefore, teaching size can significantly moderate the impact of digital technology on students' SDL.

5 DISCUSSION

To address the first research question, our meta-analysis included 27 studies on digital technology supporting students' SDL, encompassing a total of 30 effect sizes. The results indicated that digital technology has a moderate positive impact on students' SDL, suggesting significant potential for enhancing students' SDL through digital technology.

Possible reasons include: Firstly, digital technology provides students with abundant learning resources through the internet, databases, and other means. Students can independently choose learning content and adjust their learning pace according to their interests or needs, breaking through the temporal and spatial constraints of traditional classrooms. As relevant research has pointed out, the richness of online resources enables learners to actively construct knowledge networks rather than passively accept fixed course content(Hmelo-Silver et al., 2007). The support of digital technology for student learning resources meets the core elements of SDL, namely self-setting learning goals and autonomous selection of resources(Knowles, 1975), thereby stimulating students' interest and initiative in learning, which is a significant driving force for SDL. Secondly, powerful digital technology offers convenience for teachers to cultivate students' SDL. Teachers can use digital technology (e.g., teaching management systems, online testing tools) to accurately assess and fully understand students' learning situations, so as to decide whether to take intervention measures to assist students' SDL and timely adjust teaching plans and optimize teaching models(Walan, 2020). Moreover, digital technology can help teachers create an SDL environment suitable for students' characteristics (e.g., immersive learning environments), optimizing students' learning experiences and enabling learners to engage in more interesting and participatory SDL experiences. In addition, the diverse tools and platforms of digital technology have promoted students' SDL. For example, intelligent learning applications can provide personalized learning suggestions and feedback based on students' learning behaviors and data, as well as functions such as simulated tests and practice exercises to help students consolidate knowledge and improve skills. Learning management systems can assist students in organizing and managing their learning courses, tasks, and progress. Students can use these systems to organize learning content and resources, conduct efficient information processing, and record their learning outcomes for self-assessment. The diverse digital tools provide effective support for students, enabling them to better grasp the direction of learning, improve self-management, and enhance SDL.

Similarly, GenAI supports students through interactive dialogue capabilities, providing real-time answers and feedback that allow learners to progress at their preferred pace. GenAI offers broad accessibility across platforms, enabling students to explore and utilize open educational resources flexibly. By tailoring content recommendations to individual needs, GenAI further personalizes the learning experience. These integrated features enhance students' autonomy and ability to manage their own learning, thereby strengthening their capacity for self-directed learning.

The research results affirm the application value of digital technology in cultivating students' SDL. Therefore, the education sector needs more investment and effort to promote the application of digital technology in SDL cultivation. We should not overly worry about the negative impacts of digital technology, particularly GenAI, but must encourage teachers and educators to dare to utilize, reasonably utilize, and innovatively utilize digital technology to support students' SDL.

To address the second research question, this study further explored potential moderating variables, which were divided into student characteristics (educational stage, subject area) and teaching characteristics (digital technology type, intervention duration, teaching size). Among these, digital technology type and teaching size significantly moderated the impact of digital technology on students' SDL.

Regarding educational stage, digital technology showed better effects on SDL for primary and university students compared to secondary students. Primary students are in a critical period of cognitive development, with greater plasticity in their SDL development and predominantly concrete thinking(Hartshorne & Germine, 2015). Digital technology can transform abstract knowledge into more intuitive visual representations, which aligns with their cognitive characteristics and attracts their attention. Additionally, primary students easily gain a sense of accomplishment and confidence from using digital educational games, thereby increasing their learning engagement. This explains the better SDL outcomes observed in Primary students. Consistent with the findings of Han et al. (2022), university students possess higher digital literacy and greater access to digital devices, along with prior experience and proficiency in using digital technology(Garzón & Acevedo, 2019), enabling them to fully leverage these tools for SDL.

In contrast, secondary students face several challenges. First, in the regions studied, most secondary students experience significant academic pressure due to transition to higher education, which may lead them to prioritize rote learning over SDL skill development(Bound et al., 2009). Second, secondary students are in the developmental stage of adolescence. Secondary students exhibit greater emotional volatility and susceptibility to external distractions(Demkowicz et al., 2024), resulting in insufficient self-management when using digital technology for learning and difficulty adhering to study plans. Furthermore, current research on SDL cultivation primarily focuses on university students, with limited attention to secondary students. Future research needs to emphasize the development of students' SDL at the secondary stage. This may require collaborative efforts from society, families, and schools to provide additional support and guidance for cultivating SDL in secondary students.

Regarding subject area, digital technology showed better effects on SDL for students in the humanities and social sciences compared to those in medicine and engineering. This contrasts with previous findings, such as Bašić et al. (2023), who reported higher student interest and acceptance of digital technology when applied to natural sciences. The discrepancy may stem from the nature of learning content in different fields. Humanities and social sciences often emphasize the analysis and understanding of texts, history, culture, and social phenomena(Marcone, 2022), which require considering the diversity and complexity of real-world contexts. Digital technology can effectively create authentic, complex scenarios for discussion and exploration, facilitating SDL in these disciplines.

In contrast, medicine and engineering prioritize standardized experimental processes and specialized technical skills(Barlösius, 2019). These fields rely more on practical experience and professional guidance, posing higher demands for equipment and technical support compared to humanities and social sciences. Consequently, the application of digital technology to SDL in these areas may be more limited. Overall, digital technology demonstrates significant positive effects on SDL across disciplines. This insight suggests that educators can leverage digital tools for interdisciplinary teaching to cultivate SDL. Additionally, there is a need to explore and select digital technologies tailored to the specific needs of different academic fields to better support students' SDL.

Regarding digital Technology Type, this study found that different types of digital technology have a significant positive impact on students' SDL. While some research suggests that the most common challenge in using digital technology in classrooms is students' lack of skills in using it rather than questions about which technology to use(Seenivasan, 2024), our results underscore the importance of providing targeted digital technologies for SDL.

Specifically, intelligent question-and-answer technologies and collaborative inquiry technologies outperform content-delivery technologies in promoting SDL. As an emerging form of digital technology, intelligent question-and-answer tools leverage AI to offer personalized learning content and interactive experiences. These technologies significantly enhance learning efficiency, motivation, and knowledge construction(Ng et al., 2023), while also transforming teaching strategies and sparking greater interest and participation(Huang et al., 2023), thereby intelligent question-and-answer technologies can foster SDL. Collaborative inquiry technologies create immersive environments that enable deep collaboration, knowledge co-creation, and improved engagement, while cultivating problem-solving skills. In contrast, content-delivery technologies, which primarily provide one-way information transmission, lack personalization, flexibility, and practicality. They may fail to meet diverse learning needs, limiting their effectiveness in supporting SDL.

This finding highlights the critical role of educators in selecting appropriate digital technologies. When designing instructional activities, educators should prioritize aligning technology types with teaching objectives, embrace artificial intelligence applications in education, and emphasize designs that integrate theory and practice.

Regarding intervention duration, SDL outcomes were better under 4-6 weeks and 7-9 weeks of intervention compared to 1-3 weeks or more than 9 weeks. A moderate intervention period allows students to fully understand and familiarize themselves with the digital technology while maintaining high learning efficiency. During this time, teachers are more likely to invest greater resources and effort into the teaching process(Sung et al., 2016).

In contrast, shorter interventions (e.g., 1-3 weeks) may leave students insufficiently familiar with the technology. Students often need time to adapt and effectively integrate new tools into their learning practices(Ganesh et al., 2022). Additionally, SDL, as a complex competency, may not improve significantly in the short term. Longer interventions (e.g., over 9 weeks) risk diminishing student engagement due to reduced novelty(Chauhan, 2017), increased cognitive load, and greater challenges for teachers to control extraneous variables(Ganesh et al., 2022). This suggests that teachers should ensure students use digital technology adequately within a reasonable

timeframe, avoiding both brief or excessive use. Overall, since intervention duration does not significantly moderate the impact of digital technology on SDL, teachers can flexibly arrange teaching schedules based on practical instructional needs.

Regarding teaching size, interventions in 1-30 and 31-60 student groups outperformed those in 61-90 and over 90 student groups. Sun and Zhou (2024) also concluded that moderate-sized classes can leverage the advantages of digital technology more effectively. In smaller or medium-sized classes, teachers can better integrate digital tools for targeted guidance, as they have more time and energy to manage the class and control learning pace(Bucea-Manea-Țoniș et al., 2022). In contrast, large-scale teaching often leaves teachers unable to adequately monitor each student's SDL, leading to insufficient supervision and personalized support. Students may fail to fully utilize digital technology for SDL(Hobert et al., 2023), and the massive volume of learning data could also cause technical errors. In general, the teaching size is determined more by the actual teaching situation and is constrained by real conditions, making it difficult to adjust artificially. Therefore, educators should prioritize innovative digital teaching methods and enhance their instructional management skills when facing large-scale classes to foster SDL. At the same time, technologists must continuously optimize the data capacity of digital tools to address scalability challenges.

6 CONCLUSIONS

This study investigated the effectiveness of digital technology in enhancing students' SDL, analyzing 30 effect sizes from 27 studies involving 3,711 participants across diverse groups. Meta-analysis results indicate that digital technology has a moderately significant positive impact on SDL. Among moderating variables such as educational stage, subject area, digital technology type, intervention duration, and teaching size, significant differences were observed in digital technology type and teaching size. Specifically, the use of digital technologies and interventions in 1-30 student classes yielded the greatest improvements in SDL.

This reveals us that: firstly, teachers with the necessary knowledge and skills can venture to attempt the use of digital technology in SDL development, as this study has demonstrated the positive effects of digital technology in students' SDL. Second, AI, as a revolutionary force(Xu & Ouyang, 2022), has likewise brought convenience to SDL. Teachers must seize the opportunities brought by AI and continue to learn and study the application of AI in teaching. In addition to this, it is also important to focus on the impact of teaching scale and try to promote small class sizes in SDL training to optimize the effect of digital technology. Finally, although the analysis of moderating variables showed no significant moderating effect of educational stage, subject area, and intervention duration, teachers should also use digital technologies under appropriate conditions. Relatively speaking, digital technologies demonstrate less effective application among secondary students. Teachers, families, and the community need to focus on providing appropriate guidance to secondary students to help them make full use of digital technologies for SDL. Digital technology has different effects on students' SDL under different subject areas, and it is necessary for researchers to continuously develop and improve digital technology to suit the needs of learning in different subjects. Teachers also need to rationalize the amount of time students use digital technology to avoid using it for too short or too long. This study confirms the positive role and potential of digital technology in students' SDL development. This study provides theoretical guidance on how to optimize digital technology teaching and SDL activities, as well as a practical basis for digital technology educational applications and related policy development.

However, there are some limitations to this study. First, the meta-analysis included a limited amount of literature, which may have led to an incomplete view of this study. Future research should expand the databases searched to broaden the scope of literature retrieval, thereby accessing a wider range of data sources and enhancing the scientific rigor of the study. Second, the moderating variables chosen for the study were not comprehensive. For example, gender and geography may also moderate the impact of digital technology on students' SDL. Future research can continue to explore possible moderating variables in depth to draw more comprehensive findings. In addition, this study examines SDL as a competency. However it is not possible to neglect to explore the impact of digital technologies on SDL from a process viewpoint. Finally, the long-term validity of the findings of this study may be limited due to the rapid development of digital technology. Therefore, more relevant research is needed to provide a sustained focus on emerging digital technologies. For example, AI technology is rapidly evolving, and due to the limited amount of relevant literature that could be included, the study failed to focus on the effects of AI on students' SDL, and subsequent research needs to be focused on and refined.

References

Anderson, P. (2007). *What is Web 2.0?: ideas, technologies and implications for education* (Vol. 1). JISC Bristol.

Aulakh, J., Wahab, H., Richards, C., Bidaisee, S., & Ramdass, P. V. (2025). Self-directed learning versus

traditional didactic learning in undergraduate medical education: a systemic review and meta-analysis. *Bmc Medical Education*, 25(1), 1-10. <https://doi.org/10.1186/s12909-024-06449-0>

Barlösius, E. (2019). Concepts of originality in the natural science, medical, and engineering disciplines: An analysis of research proposals. *Science, Technology, Human Values*, 44(6), 915-937. <https://doi.org/10.1177/0162243918808370>

Bašić, Ž., Banovac, A., Kružić, I., & Jerković, I. (2023). ChatGPT-3.5 as writing assistance in students' essays. *Humanities social sciences communications*, 10(1), 1-5. <https://doi.org/10.1057/s41599-023-02269-7>

Bound, J., Hershbein, B., & Long, B. T. (2009). Playing the admissions game: Student reactions to increasing college competition. *Journal of Economic Perspectives*, 23(4), 119-146. <https://doi.org/10.1257/jep.23.4.119>

Bozkurt, A., Junhong, X., Lambert, S., Pazurek, A., Crompton, H., Koseoglu, S.,...Honeychurch, S. (2023). Speculative futures on ChatGPT and generative artificial intelligence (AI): A collective reflection from the educational landscape. *Asian Journal of Distance Education*, 18(1), 53-130. <https://doi.org/10.5281/zenodo.7636568>

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,...Askell, A. (2020). Language models are few-shot learners. *Advances in neural information processing systems*, 33, 1877-1901. <https://doi.org/10.48550/arXiv.2005.14165>

Bucea-Manea-Țoniș, R., Kuleto, V., Gudei, S. C. D., Lianu, C., Lianu, C., Ilić, M. P., & Păun, D. (2022). Artificial intelligence potential in higher education institutions enhanced learning environment in Romania and Serbia. *Sustainability*, 14(10), 5842. <https://doi.org/10.3390/su14105842>

Chauhan, S. (2017). A meta-analysis of the impact of technology on learning effectiveness of elementary students. *Computers Education*, 105, 14-30. <https://doi.org/10.1016/j.compedu.2016.11.005>

Chiang, Y.-h. V., Chang, M., & Chen, N.-S. (2024). Can generative AI help realize the shift from an outcome-oriented to a process-outcome-balanced educational practice? *Educational Technology Society*, 27(2), 347-385. [https://doi.org/10.30191/ETS.202404_27\(2\).TP04](https://doi.org/10.30191/ETS.202404_27(2).TP04)

Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. *Psychological bulletin*, 70(4), 213. <https://doi.org/10.1037/h0026256>

Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. *Journal of Science EducationTechnology*, 32(3), 444-452. <https://doi.org/10.1007/s10956-023-10039-y>

Demkowicz, O., Panayiotou, M., Qualter, P., & Humphrey, N. (2024). Longitudinal relationships across emotional distress, perceived emotion regulation, and social connections during early adolescence: a developmental cascades investigation. *Development Psychopathology*, 36(2), 562-577. <https://doi.org/10.1017/S0954579422001407>

Fadda, D., Pellegrini, M., Vivianet, G., & Zandonella Callegher, C. (2022). Effects of digital games on student motivation in mathematics: A meta-analysis in K-12. *Journal of computer assisted learning*, 38(1), 304-325. <https://doi.org/10.1111/jcal.12618>

Ganesh, D., Kumar, M. S., Reddy, P. V., Kavitha, S., & Murthy, D. S. (2022). Implementation of AI Pop Bots and its allied Applications for Designing Efficient Curriculum in Early Childhood Education. *International Journal of Early Childhood Special Education*, 14(3), 41-54. <https://doi.org/10.24293/ijecse.v14i1.104>

Gaol, F. L., & Prasolova-Førland, E. (2022). Special section editorial: The frontiers of augmented and mixed reality in all levels of education. *Education Information Technologies*, 27, 1-13. <https://doi.org/10.1007/s10639-023-12001-2>

Garzón, J., & Acevedo, J. (2019). Meta-analysis of the impact of Augmented Reality on students' learning gains. *Educational Research Review*, 27, 244-260. <https://doi.org/10.1016/j.edurev.2019.04.001>

Gilson, A., Safranek, C. W., Huang, T., Socrates, V., Chi, L., Taylor, R. A., & Chartash, D. (2023). How does ChatGPT perform on the United States Medical Licensing Examination (USMLE)? The implications of large language models for medical education and knowledge assessment. *JMIR medical education*, 9(1), e45312. <https://doi.org/10.2196/45312>

Guglielmino, L. (1977). Development of the self-directed learning readiness scale. *University of Georgia*, 64-67.

Han, J.-W., Park, J., & Lee, H. (2022). Analysis of the effect of an artificial intelligence chatbot educational program on non-face-to-face classes: a quasi-experimental study. *Bmc Medical Education*, 22(1), 830. <https://doi.org/10.1186/s12909-022-03898-3>

Hartshorne, J. K., & Germine, L. T. (2015). When does cognitive functioning peak? The asynchronous rise and fall of different cognitive abilities across the life span. *Psychological science*, 26(4), 433-443. <https://doi.org/10.1177/0956797614567339>

Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related estimators. *Journal of Educational Statistics*, 6(2), 107-128. <https://doi.org/10.3102/10769986006002107>

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: a response to Kirschner, Sweller, and. *Educational Psychologist*, 42(2), 99-107. <https://doi.org/10.1080/00461520701263368>

Hobert, S., Følstad, A., & Law, E. L.-C. (2023). Chatbots for active learning: A case of phishing email identification. *International Journal of Human-Computer Studies*, 179, 103108. <https://doi.org/10.1016/j.ijhcs.2023.103108>

Huang, A. Y., Lu, O. H., & Yang, S. J. (2023). Effects of artificial Intelligence-Enabled personalized recommendations on learners' learning engagement, motivation, and outcomes in a flipped classroom. *Computers Education*, 194, 104684. <https://doi.org/10.1016/j.compedu.2022.104684>

Jossberger, H., Brand-Gruwel, S., Boshuizen, H., & Van de Wiel, M. (2010). The challenge of self-directed and self-regulated learning in vocational education: A theoretical analysis and synthesis of requirements. *Journal of vocational education training*, 62(4), 415-440. <https://doi.org/10.1080/13636820.2010.523479>

Knowles, M. S. (1975). Self-directed learning: A guide for learners and teachers. *Cambridge Adult Education*, 18-22.

Lan, M., & Zhou, X. (2025). A qualitative systematic review on AI empowered self-regulated learning in higher education. *npj Science of Learning*, 10(1), 21. <https://doi.org/10.1038/s41539-025-00319-0>

Lee, G. (2024). AI-based writing feedback in ESP: Leveraging ChatGPT for writing business cover letters among Korean university students. Proceedings of the International CALL Research Conference,

Lingling, L. (2024). Research on the Application of the New Blended Teaching Model Based on Virtual Simulation Technology in Foreign Language Teaching. *Journal of Critical Studies in Language Literature*, 5(2), 22-31. <https://doi.org/10.46809/jcsl.v5i2.255>

Ma, H., Niu, A., Tan, J., Wang, J., & Luo, Y. (2024). Nursing students' perception of digital technology in clinical education among undergraduate programs: A qualitative systematic review. *Journal of Professional Nursing*, 53, 49-56. <https://doi.org/10.1016/j.profnurs.2024.04.008>

Marcone, G. (2022). Humanities and social sciences in relation to sustainable development goals and STEM education. *Sustainability*, 14(6), 3279. <https://doi.org/10.3390/su14063279>

Morris, T. H. (2019). Self-directed learning: A fundamental competence in a rapidly changing world. *International Review of Education*, 65(4), 633-653. <https://doi.org/10.1007/s11159-019-09793-2>

Morris, T. H., & Rohs, M. (2023). The potential for digital technology to support self-directed learning in formal education of children: A scoping review. *Interactive Learning Environments*, 31(4), 1974-1987. <https://doi.org/10.1080/10494820.2020.1870501>

Morrison, D., & McCutheon, J. (2019). Empowering older adults' informal, self-directed learning: harnessing the potential of online personal learning networks. *Research Practice in Technology Enhanced Learning*, 14(1), 10. <https://doi.org/10.1186/s41039-019-0104-5>

Ng, D. T. K., Leung, J. K. L., Su, J., Ng, R. C. W., & Chu, S. K. W. (2023). Teachers' AI digital competencies and twenty-first century skills in the post-pandemic world. *Educational technology research development*, 71(1), 137-161. <https://doi.org/10.1007/s11423-023-10203-6>

Rashed Ibrahem Almohesh, A. (2024). AI Application (ChatGPT) and Saudi Arabian Primary School Students' Autonomy in Online Classes: Exploring Students and Teachers' Perceptions. *International Review of Research in Open Distributed Learning*, 25(3), 1-18. <https://doi.org/10.19173/irrod.v25i3.7641>

Sailer, M., Maier, R., Berger, S., Kastorff, T., & Stegmann, K. (2024). Learning activities in technology-enhanced learning: A systematic review of meta-analyses and second-order meta-analysis in higher education. *Learning individual differences*, 112, 102446. <https://doi.org/10.1016/j.lindif.2024.102446>

Schneckenberg, D., Ehlers, U., & Adelsberger, H. (2011). Web 2.0 and competence-oriented design of learning—Potentials and implications for higher education. *British Journal of Educational Technology*, 42(5), 747-762. <https://doi.org/10.1111/j.1467-8535.2010.01092.x>

Seenivasan, R. (2024). ICT in education: A critical literature review and its implications. *International Journal of Finance, Insurance Risk Management*, 14(1), 12-27. <https://doi.org/10.35808/ijfirms/378>

Stockdale, S. L., & Brockett, R. G. (2011). Development of the PRO-SDLS: A measure of self-direction in learning based on the personal responsibility orientation model. *Adult education quarterly*, 61(2), 161-180. <https://doi.org/10.1177/0741713610380447>

Sun, L., & Zhou, L. (2024). Does generative artificial intelligence improve the academic achievement of college students? A meta-analysis. *Journal of Educational computing research*, 62(7), 1896-1933. <https://doi.org/10.1177/07356331241277937>

Sung, Y.-T., Chang, K.-E., & Liu, T.-C. (2016). The effects of integrating mobile devices with teaching and learning on students' learning performance: A meta-analysis and research synthesis. *Computers Education*, 94, 252-275. <https://doi.org/10.1016/j.compedu.2015.11.008>

Tang, C., Mao, S., Naumann, S. E., & Xing, Z. (2022). Improving student creativity through digital technology products: A literature review. *Thinking Skills Creativity*, 44, 101032.

<https://doi.org/10.1016/j.tsc.2022.101032>

Walan, S. (2020). Embracing digital technology in science classrooms—secondary school teachers' enacted teaching and reflections on practice. *Journal of Science EducationTechnology*, 29(3), 431-441.
<https://doi.org/10.1007/s10956-020-09828-6>

Xu, W., & Ouyang, F. (2022). The application of AI technologies in STEM education: a systematic review from 2011 to 2021. *International Journal of STEM Education*, 9(1), 59. <https://doi.org/10.1186/s40594-022-00377-5>

Yeh, C.-H., Huang, H.-M., Kuo, C.-L., Huang, C.-Y., & Cheng, S.-F. (2022). Effectiveness of e-STORY App in clinical reasoning competency and self-directed learning among students in associate nursing program: A quasi experimental study. *Nurse education in practice*, 64, 103456.
<https://doi.org/10.1016/j.nep.2022.103456>

Zhang, J., Li, G., Huang, Q., Feng, Q., & Luo, H. (2022). Augmented reality in K–12 education: A systematic review and meta-analysis of the literature from 2000 to 2020. *Sustainability*, 14(15), 9725.
<https://doi.org/10.3390/su14159725>

Acceptance of Artificial Intelligence Tools Among Undergraduates: An Application of the Technology Acceptance Model

Edwin Osmil COREAS-FLORES

Universidad Gerardo Barrios, El Salvador

ORCID: 0000-0003-4380-5602

osmil@ugb.edu.sv

SUMMARY

This study investigated the application of the Technology Acceptance Model (TAM) to assess the acceptance and adoption of Artificial Intelligence tools in educational contexts. The research focused on analyzing the attitudes of university students towards the implementation of AI technologies in teaching and learning processes.

Methodology: The study used the TAM theoretical framework, focusing on two main constructs: perceived usefulness and perceived ease of use as predictors of intention to use AI tools in education. Correlational and median difference statistical analyses were applied to examine the relationships between these variables in a sample of students. **Key findings:** Results revealed significant correlations between *perceived usefulness* and *intention to use AI*, as well as between *perceived ease of use* and *behavioural intention*. Inferential analysis demonstrates that the external variables *prior experience with technology* and *institutional support* influence *perceived usefulness*, *perceived ease of use* and *intention to use AI* tools in university higher education. In addition, hierarchical regression was used to analyze the moderation of external variables in the TAM model, finding that previous experience with technology significantly enhances the relationship between perceived usefulness and intention to use ($\beta = .35$, $p = .001$), increasing the explained variance to 53% in the final model. On the other hand, student participants, grouped into *academic faculties*, show significant differences in the perception of the TAM variables. **Conclusions:** The study confirms the applicability of the TAM model in the educational context for AI technologies, suggesting that both perceived benefits and usability and institutional support are critical factors in promoting the successful adoption of these tools in academic settings.

Keywords: TAM, Artificial Intelligence, University Higher Education

INTRODUCTION

The integration of Artificial Intelligence (AI) in higher education is transforming traditional teaching and learning paradigms (Zawacki-Richter et al., 2019). However, the adoption of these tools has not been uniform across universities, generating debate about their effectiveness and acceptance.

Problematic situation

Internationally, the integration of digital technology in education has allowed the democratization of access to information, expanding educational coverage and implementing interactivity through learning environments (Araujo Bedoya et al., 2024), which is redefining the future in terms of learning (Vera & García-Martínez, 2022). This technological adoption has generated a paradigm shift in the integration of educational technology (Gros et al., 2020), which has undoubtedly led universities to consider its challenges and opportunities (Carrión Salinas & Andrade-Vargas, 2024).

The implementation of AI tools in higher education varies significantly. Holmes et al. (2019) and Pedreño Muñoz (2022) say that there has been an increase in the adoption of AI in education globally, with countries such as the United States, Spain and China adopting these technologies as intelligent tutoring systems (ITS) and being welcomed by education stakeholders; while, during the 2020-2025 period, generative artificial intelligence has been adopted as a teaching strategy that improves teaching and learning. (Echeverría Quiñonez & Otero Mendoza, 2025).

In Latin America, the integration of technology in university education is in its early stages, with challenges related to technological infrastructure and teacher training (Holmes et al., 2019; Luckin et al., 2016; Pedreño Muñoz, 2022), as well as the student perception indicated by Morocho Cevallos et al. (2023) who state that only 70% of students in the Ecuadorian public sector and 65% in the private sector have identified improvements in teaching methodology using AI tools, showing a variability in the perceptions and experiences of students, who in turn have identified improvements in their performance and academic participation.

At the local level, it has been observed that universities are beginning to experiment with AI tools, but their widespread adoption still faces barriers, including the adoption and willingness to use AI by university students, of which no Salvadoran studies have been conducted, leading to the next general research question: What are the factors that influence university students' acceptance of artificial intelligence tools according to the Technology Acceptance Model (TAM)?

The specific research questions that guide the objectives of this study are presented below:

1. how do perceived usefulness and perceived ease of use influence university students' intention to use AI tools?
2. What role do external variables, such as prior experience with technology and institutional support, play in the acceptance of AI tools?
3. Are there significant differences in the acceptance of AI tools among students from different academic faculties?

Objectives

Overall objective

To analyze the factors that influence the acceptance of artificial intelligence tools by university students using the Technology Acceptance Model (TAM).

Specific objectives

1. Examine the relationship between perceived usefulness, perceived ease of use, and intention to use AI tools in the university context.
2. Assess the impact of external variables such as previous experience with technology and institutional support on the acceptance of AI tools.
3. Compare the acceptance of AI tools among students from different academic faculties.

Hypothesis system

H1: Perceived usefulness of AI tools is positively related to intention to use by university students.

H2: Perceived ease of use of AI tools is positively related to intention to use by university students.

H3: External variables, such as previous experience with technology and institutional support, are positively related to perceived usefulness and perceived ease of use of AI tools.

H4: There are significant differences in the acceptance of AI tools among students from different academic faculties.

Justification

This study is relevant to the academic and scientific community as it provides crucial information on the factors that influence the adoption of AI tools in higher education. The results inform educators, university administrators and educational technology developers on how to improve the implementation and use of these tools. In addition, the study contributes to the literature on the application of TAM in the context of emerging technologies in education.

Literature review

Technology Acceptance Model (TAM)

The Technology Acceptance Model (TAM), proposed by Davis (1989), is widely used to explain the adoption of new technologies. The TAM postulates that the intention to use a technology is mainly determined by two factors: perceived usefulness and perceived ease of use. Thus, King & He (2006) consistently confirm their main constructs as predictors of technology adoption.

Previous studies have applied the TAM in the context of higher education. For example, Morales Chan et al. (2018) used TAM to investigate the adoption of cloud-based tools by MOOC students, finding that perceived ease of use and perceived usefulness influence attitudes towards cloud-based tools used in a MOOC. Scheler et al. (2019) used an extension of the TAM to examine the acceptance of digital learning technologies among university teachers. Their findings suggest that perceived usefulness and perceived ease of use are significant predictors of usage intention. Chau identified TAM as one of the most influential models in research on technologies applied to online education or web-based learning (Chen, Zou, et al., 2020, citing Chau, 1996).

Applications of the Technology Acceptance Model (TAM) over the 2020-2025 period have demonstrated adaptability and continued relevance in explaining the adoption of emerging technologies in higher education (Cabero-Almenara et al., 2018). Extensions of the TAM developed during 2022-2023 have incorporated constructs specific to AI tool acceptance, including variables such as positive attitudes among faculty and

institutional support (Robles Morales, 2025), ethics and trust as moderating variables, and subjective norms as a quadratic variable (Mustofa et al., 2025).

Recent meta-analyses (2024-2025) confirm that perceived usefulness and perceived ease of use maintain their predictive power, while additional factors such as self-efficacy, social norms, and enjoyment emerge as significant predictors of perceived usefulness and ease of use of technology (Santini et al., 2025).

Along the same lines, validation studies of TAM instruments for mobile applications have reported highly positive perceptions and increasing willingness to use educational technologies (León-Garrido et al., 2025).

Technology Acceptance Model (TAM) Extensions

The Technology Acceptance Model (TAM), proposed by Davis (1986), has undergone multiple extensions and refinements since its original conception, with the aim of improving its explanatory power and adapting it to various technological and organizational contexts. These extensions have arisen to address limitations identified in the original model and to incorporate additional factors that influence the acceptance and use of emerging technologies.

TAM2: Theoretical Extension of the Original Model

TAM2 represents the first major extension of the original model, developed by Venkatesh & Davis (2000) with the purpose of explaining in more detail the antecedents of perceived usefulness and providing a more complete understanding of the factors that influence technological acceptance. This extension incorporates two main categories of determinants: social influence processes and cognitive instrumental processes. *Social influence processes* include *subjective norm* (the individual's perception of whether important people think he or she should use the system), *voluntariness* (the degree to which use is perceived as non-compulsory), and *image* (the degree to which use enhances status within the social group). For their part, *cognitive instrumental processes* comprise *job relevance* (degree to which the individual believes the system is applicable to his or her job), *quality of results* (degree to which the system executes relevant tasks correctly), and *demonstrability of results* (tangibility of the results of system use) (Venkatesh & Davis, 2000). Empirical validation of TAM2 was conducted through four longitudinal field studies in different organizations, demonstrating that social influence factors are particularly important during the initial stages of implementation, while cognitive instrumental processes maintain their relevance over adoption time (Venkatesh & Davis, 2000).

TAM3: Comprehensive Integration of Determinants

TAM3, proposed by Venkatesh & Bala (2008), represents a comprehensive integration that incorporates both the elements of TAM2 and the determinants of perceived ease of use, thus providing a holistic view of the factors influencing technological acceptance. This extension identifies *anchors* (variables that act as initial reference points) and *adjustments* (modifications based on direct experience with the system) as explanatory mechanisms of perceived ease of use. Anchors include *computer self-efficacy* (judgment of one's own abilities to use computers), *perceived external control* (beliefs about the availability of resources and organizational support), *computer anxiety* (degree of apprehension toward computer use), and *computer playfulness* (degree to which interactions with computers are perceived as fun). Adjustments include *perceived enjoyment* (extent to which the use activity is perceived as pleasurable) and *objective usability* (comparison of systems based on the actual effort required to complete specific tasks) (Venkatesh & Bala, 2008). TAM3 has demonstrated predictive robustness in diverse organizational and technological contexts, providing a comprehensive theoretical framework for understanding both the cognitive and experiential antecedents of technological acceptance (Venkatesh & Bala, 2008).

UTAUT: Unified Theory of Acceptance and Use of Technology

The Unified Theory of Acceptance and Use of Technology (UTAUT) was developed by Venkatesh et al. (2003) as a result of the conceptual and empirical integration of eight prominent technology acceptance models, including TAM, TAM2, the Theory of Reasoned Action, the Motivational Model, the Theory of Planned Behavior, Social Cognitive Theory, the Theory of Diffusion of Innovations, and a combined model of TAM and TPB. UTAUT proposes four direct determinants of usage intention and behavior: *performance expectancy* (the degree to which the individual believes that using the system will help them achieve improvements in job performance), *effort expectancy* (the degree of ease associated with using the system), *social influence* (the degree to which the individual perceives that important others believe they should use the new system), and *facilitating conditions* (degree to which the individual believes that organizational and technical infrastructure exists to support the use of the system) (Venkatesh et al., 2003). In addition, UTAUT incorporates four key moderating variables: *gender*, *age*, *experience*, and *willingness to use*, which moderate the relationships between the main determinants and the dependent outcomes. Empirical validation of UTAUT showed that this model explains approximately 70% of the

variance in intention to use, significantly exceeding the explanatory power of previous individual models (Venkatesh et al., 2003).

UTAUT2: Extension for Consumer Contexts

UTAUT2 represents a specific extension of UTAUT developed by Venkatesh et al. (2012) to address the particularities of technology adoption in consumer contexts, where individuals act as end users rather than organizational employees. This extension incorporates three additional constructs that reflect the specific motivations and constraints of consumers. The new constructs include *hedonic motivation* (fun or pleasure derived from using the technology), *price value* (consumers' cognitive trade-off between the perceived benefits of applications and the monetary cost of using them), and *habit* (the extent to which people tend to perform behaviors automatically due to prior learning). Additionally, UTAUT2 eliminates the moderating variable of voluntariness, since in consumer contexts, use is inherently voluntary (Venkatesh et al., 2012). Empirical validation of UTAUT2 in mobile technology contexts demonstrated substantial improvements in the explanatory power of the model, achieving an explained variance of 74% for intention to use and 52% for usage behavior (Venkatesh et al., 2012).

Specific Extensions for Educational Contexts

Various studies have developed specific adaptations of TAM and its extensions for educational contexts, recognizing the particularities of the academic environment and the specific characteristics of students and teachers as technology users. These adaptations have incorporated variables such as *technological self-efficacy*, *attitudes toward online learning*, *institutional support*, and the *quality of the educational system*. Abdullah & Ward (2016) developed an extension of TAM specifically for e-learning, integrating the factors of experience, subjective norm, enjoyment, computer anxiety, and self-efficacy as antecedents of perceived usefulness and perceived ease of use.

Artificial Intelligence in Education

In the field of AI in education, Zawacki-Richter et al. (2019) conducted a systematic literature review, identifying promising applications in areas such as intelligent tutoring and automated assessment. However, they also pointed out the need for more empirical research on the use of these technologies in higher education. Similarly, Zhi & Wang (2024) express a favourable attitude of EFL learners towards AI to enhance language learning.

The state of the art provides an overview of the various applications, benefits and challenges of AI in education. From personalisation of learning to automated assessment, AI is transforming the educational landscape. However, it also highlights important ethical and practical considerations that must be addressed for a successful and responsible implementation of AI in education:

1. Personalisation of Learning: AI systems are being developed to tailor the content, pace and approach to learning to the individual needs of each learner. Luckin et al. (2016) argue that this personalisation can significantly improve learning outcomes by providing more relevant and effective educational experiences. Recent studies in the period 2020-2025 indicate that generative AI has revolutionized the creation of educational materials, enabling the automated generation of adaptive and personalized content tailored to individual learning needs (Romani Pillpe et al., 2025).
2. Intelligent tutoring systems: Intelligent tutors use AI to provide immediate feedback and personalised support to students. VanLehn (2011) states that these systems can be as effective as tutoring by a human, giving value to guided practice and immediate feedback. Bravo Ortega (2025), in a systematic review of the period 2021-2025, identified that AI-based platforms provide more accurate and contextualized feedback, while freeing teachers from routine tasks.
3. Predicting academic performance: Advanced learning analytics algorithms represent another significant growth area in the application of AI. Siemens (2013) highlights how AI is improving the ability to analyze student progress in real time, enabling more timely and effective interventions. These tools can predict future student performance, identify learning patterns and provide valuable insights for educators. Furthermore, Luan & Tsai (2021) indicate that these models can accurately identify students at risk of academic failure, allowing for early interventions and personalised support; while a systematic review of the literature in 2020-2025 determined that AI applications improve educational outcomes by offering the possibility of massive processing of academic data (Modesto Acosta et al., 2024).
4. Continuous and adaptive assessment: AI is also transforming assessment methods in education, adjusting learning content and practices in real time to the level of knowledge demonstrated by the learner, based on the results of student learning analysis (Cuenca Aguilar, 2022).
5. Virtual Assistants in Education: Goel & Polepeddi (2018) analyzed the use of AI-based virtual assistants in higher education. Their case study on Jill Watson, a virtual teaching assistant used at the Georgia Institute of Technology, demonstrated that AI chatbots can effectively handle student queries, freeing up time for human instructors to focus on more complex tasks. Similarly Luna Fox & Paredes Rosado (2024)

identified studies in 2020-205 that favor their use as 24/7 academic support tools to address student queries.

6. AI and Accessibility in Education: Drigas & Ioannidou (2012) explored how AI can improve accessibility in education for students with disabilities. Their review highlighted the application of AI tools, such as intelligent tutoring systems, for students with dyslexia, dysgraphia and dyscalculia and augmentative communication tools for students with speech disorders. Likewise, Ruiz Muñoz et al. (2025) detected a notable advance in the use of technology to improve cultural and linguistic adaptations to the local environment.
7. Ethics and Privacy in Educational AI: Zawacki-Richter et al. (2019) and Idowu (2024) conducted a systematic review of the literature on AI in higher education, focusing on ethical and privacy implications. They identified key concerns, such as student data protection and transparency in algorithmic decision-making, highlighting the need for clear policies and guidelines for the ethical use of AI in education. Holmes et al. (2019) raised concerns about confidentiality and the ethical use of mass collection and analysis of students' personal data by AI systems.
8. Teacher literacy. In their systematic review corresponding to the period 2020-2025 Luna Fox & Paredes Rosado (2024) determined that teacher training in advanced digital competencies persists as one of the significant challenges in the use of these technologies.

Digital Pedagogy and Educational Transformation

Digital pedagogy and educational transformation represent an emerging paradigm that redefines teaching and learning processes in 21st-century higher education, characterized by the critical and strategic integration of digital technologies that transcend the mere instrumental use of technological tools (Sancho-Gil et al., 2020). This transformation involves a profound reconceptualization of the roles of teachers and students, promoting active, collaborative, and personalized methodologies that respond to the demands of a digitalized society (Almenara & Gimeno, 2019). This transformation requires not only adequate technological infrastructure, but also an institutional cultural change that favors pedagogical innovation and the development of critical digital skills, positioning higher education institutions as active agents in the construction of sustainable and equitable digital educational ecosystems (Bond et al., 2018; García-Peña, 2021). This transformation and digital pedagogy implies:

1. Emerging Conceptual Frameworks. Digital pedagogy has undergone rapid transformation during the period 2020-2025, initially driven by the need to respond to the health emergency and subsequently consolidated as a technology-based educational model (Coreas-Flores & Romero-Argueta, 2024). The transformation of remote teaching due to the emergency (2020-2021) towards structured digital pedagogical models (Pozo et al., 2024) marked a milestone in higher education, setting new standards for technological integration in teaching-learning processes.
2. Consolidation of Hybrid Models. The period 2022-2023 was characterized by the consolidation of hybrid educational models with a multimodal approach, combining digital resources in enriched experiences that favor different learning styles (Mayorga-Ases et al., 2025). During this stage, the growth of microlearning and microcredentials transformed traditional university education paradigms, promoting modular education through non-linear learning paths and curriculum personalization as part of lifelong learning (Arroyave Villa, 2024).
3. Teacher Digital Competencies. National frameworks for teacher digital competencies were established as a strategic priority, with specific training programs developed for the effective integration of educational technologies (Berrú Torres et al., 2025). The national digital education strategies implemented during this period prioritized institutional transformation and the creation of digital educational ecosystems (Gros Salvat & Cano García, 2021).
4. Integration with AI. Currently (2024-2025), AI-mediated learning experiences represent the frontier of digital pedagogy (Miao & Holmes, 2024), facilitating the creation of adaptive digital collaborative environments and lifelong learning platforms that respond dynamically to the individual and group needs of students, in response to which UNESCO intrinsically requires a human-centered approach to AI. In the context of artificial intelligence, digital pedagogy takes on additional dimensions of complexity by incorporating adaptive systems that enable personalized learning, automated assessment, and immediate feedback, generating new challenges related to technological acceptance, teacher digital competencies, and ethics in the use of educational algorithms (Zawacki-Richter et al., 2019).

Operationalization of variables

1. Dependent variable: Intention to use AI tools
Indicators: Expected frequency of use, willingness to use AI tools in academic tasks
2. Independent variables:
 - a) Perceived usefulness

- Indicators: Perception of improvement in academic performance, efficiency in task completion.
- b) Perceived ease of use
 - Indicators: Ease of learning, clarity of user interface
 - c) Understanding of AI technology in education
 - Indicators: Perceived benefits, perceived risks
- 3. External variables:
 - a) Previous experience with technology.
 - Indicators: Level of familiarity with digital tools, frequency of use of technology in learning.
 - b) Institutional support.
 - Indicators: Availability of resources, training for teachers and students on the use of AI.
 - c) Academic faculty.
 - Indicators: Academic faculty, integration of technology into the curriculum.

METHODOLOGY

Research design

A quantitative, cross-sectional, correlational, quantitative research design was used.

Population and sample:

The population consists of students enrolled in a university higher education institution in El Salvador. The sample consisted of 190 university students from various academic faculties, selected at convenience based on their availability at the time of data collection.

Instruments

A questionnaire was developed based on validated TAM scales (Al-Adwan et al., 2023; Davis, 1986, 1989) adapted to the specific context of AI tools in higher education. The questionnaire included sections for each study variable, with items measured on a 5-point Likert scale, where 1 is the maximum value of disagreement and 5 the maximum value of agreement, a scale that facilitated quantitative analysis using descriptive and inferential statistics. Section 1 collects essential demographic information, including academic faculty, to allow comparisons between different areas of study; sections 2-3 address the external variables identified in the study (Previous Experience with Technology and Institutional Support), while sections 4-6 represent the core constructs of the TAM (Perceived Usefulness, Perceived Ease of Use, and Intention to Use). Section 7 includes questions identifying the benefits perceived by students regarding the use of AI in education. Finally, section 8 seeks to identify the risks perceived by students arising from the implementation of AI in their academic training.

Procedure

The questionnaire was administered online via the QuestionPro platform. It was previously validated by experts and informed consent was obtained from participants prior to data collection.

Data analysis

The information collected in the survey was exported to a database for processing using Perfect Statistical Professional Presented (PSPP) statistical software. The reliability of the questionnaire, shown in Table 1, was determined using the internal consistency method based on Cronbach's alpha, which measured the degree of internal correlation between the 34 non-demographic items, achieving a result of ,94, which is very high (Palella Stracuzzi & Martins Pestana, 2012, p. 169).

Table 1: Internal consistency of the instrument

Variable	Cronbach's alpha	Number of elements
Previous experience with technology	,82	4
Institutional Support	,82	5
Perceived Usefulness	,92	5
Perceived Ease of Use	,86	5
Intention to Use	,91	4
Perceived Benefits	,90	5
Perceived Risks	,86	6

Descriptive statistics were used to calculate the mean response for each study variable and position it as the students' perception of it. These data can be reviewed in Table 2.

In this sense, *previous experience with technology* was calculated by obtaining the mean of the Likert scale responses in the questions associated with the variable; it was then classified as follows: 1 to 2 = *With low previous experience*, 3 = *With intermediate experience*, 4 to 5 = *With high previous experience*.

For the variable *Intention to use AI tools*, the mean was calculated and classified as follows: 1 to 2 = *Low intention to use AI tools*, 3 = *Medium intention to use AI tools*, and 4 to 5 = *High intention to use AI tools*.

For the variable *Perceived usefulness*, the mean was calculated and categorized as follows: 1 to 2 = *Low usefulness*, 3 = *Medium usefulness*, and 4 to 5 = *High usefulness*.

Ease of use was calculated as follows: 1 to 2 = *Difficult to use*, 3 = *Moderate ease of use*, 4 to 5 = *Easy to use*.

Institutional support was calculated as follows: 1 to 3 = *No institutional support*, 4 to 5 = *Institutional support*.

To measure *Perceived Benefits*, the mean was calculated and classified as follows: 1 to 2 = *Low perception of Benefits* when using AI tools, 3 = *Medium perception of Benefits* when using AI tools, and 4 to 5 = *High intention of Benefits* when using AI tools.

Finally, to measure *Perceived Risks*, the mean was calculated and categorized as follows: 1 to 2 = *low perceived risk* when using AI tools, 3 = *medium perceived risk* when using AI tools, and 4 to 5 = *high perceived risk* when using AI tools.

FINDINGS

Correlational analyses using Spearman's coefficient revealed that the central constructs of the Technology Acceptance Model (perceived usefulness and ease of use) maintain significant positive relationships with the intention to use artificial intelligence tools in educational contexts, with perceived usefulness being the strongest predictor (Mias, 2018). The results showed that contextual factors such as previous experience with technology and differences between academic faculties had weak associations with the main variables, while institutional support emerged as a moderately influential element, particularly in the perception of usefulness. Additionally, it was confirmed that the intention to use is strongly associated with perceived benefits and weakly associated with risks identified by students, suggesting that the acceptance of AI tools in higher education is mainly determined by the perception of academic value and ease of implementation, with institutional support acting as a facilitator of the technology adoption process.

Table 2 shows the Kolmogorov Smirnov (KS) test, whose results indicate that nonparametric statistical methods should be applied, since the data do not belong to a normal distribution.

Spearman's correlation was calculated to check whether the *intention to use* is related to *perceived usefulness* and *perceived ease of use*, measured according to Mias (2018). See Table 3 and Figure 1.

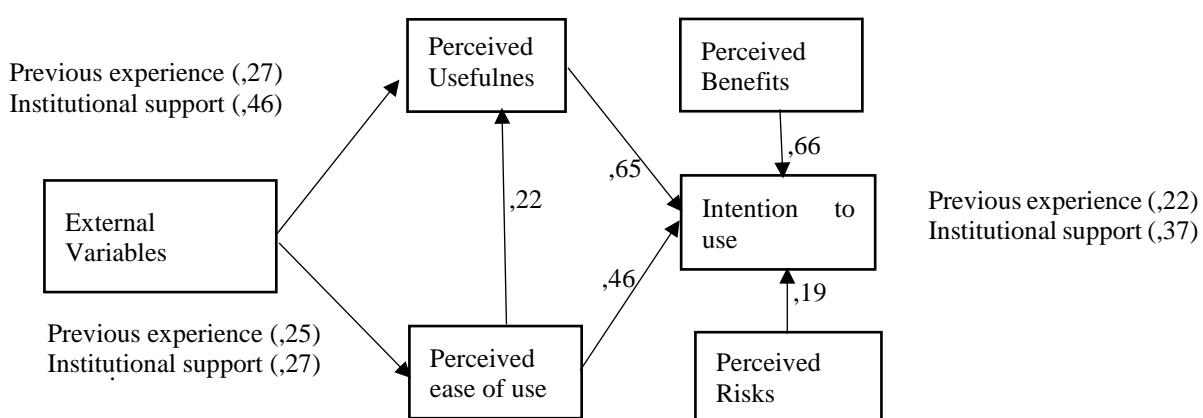


Figure 1: Technology Acceptance Model

The correlation between *perceived usefulness* and *intention to use AI tools* (H1) is rho = ,65, which is a *high positive correlation* (Mias, 2018). This is because students are more willing to adopt AI tools when they perceive them as useful for their academic activities, including significantly improving their academic performance, self-regulating their learning, efficiently solving tasks, and improving the quality of their academic work.

Table 2: Descriptive Statistics

	Previous Experience with Technology	Perceived Institutional usefulness to Use Support	Perceived Ease of Use	Intention	Benefits Perceived	Risks Perceived
N	190	190	190	190	190	190
Valid						
Lost	0	0	0	0	0	0
Low / No	5.8%	38.9%	2.6%	3.2%	5.3%	3.2%
Intermediate	15.8%		15.8%	28.9%	28.4%	24.7%
High / With	78.4%	61.1%	81.6%	67.9%	66.3%	72.1%
Mean	2.73	1.61	2.79	2.65	2.61	2.69
Standard Error of the Mean	.04	.04	.03	.04	.04	.05
Median	3.00	2.00	3.00	3.00	3.00	2.00
Mode	With high previous experience	With institutional support	High usefulness	With high intention	Easy to use	High perception of benefits of using AI tools
Std Dev	.56	.49	.47	.54	.59	.53
Variance	.32	.24	.22	.29	.34	.28
Curtosis	2.79	-1.81	4.09	.50	.52	1.22
Asymmetry	-1.96	-.46	-2.17	-1.22	-1.23	-1.46
Interval	2.00	1.00	2.00	2.00	2.00	2.00
Minimum	With low previous experience	No institutional support	Low usefulness	With low intention	Difficult to use	Low perception of benefits of using AI tools
Maximum	With high previous experience	With institutional support	High usefulness	With high intention	Easy to use	High perception of benefits of using AI tools
Kolmogorov-Smirnov Z	6.49	5.48	6.74	5.81	5.65	6.10
Asymptotic Significance (2 tails)	.000	.000	.000	.000	.000	.000

Table 3: Spearman's Correlation

Factors	Intention of use of AI tools	Perceived usefulness	Ease of use
Perceived usefulness	,65		
Perceived ease of use	,46	,40	
Previous experience with technology	,22	,27	,25
Institutional support	,37	,46	,27
Perceived benefits	,66	,51	,40
Perceived risks	,19	,14	,21

Regarding the correlation between *perceived ease of use* and *intention to use* AI tools (H2) is rho = .46, which is considered a *moderate positive correlation*, which indicates that, while important, it is not as crucial as *perceived usefulness*.

Statistical tests show that *previous experience with technology* and *institutional support* are external variables to the TAM model that show a correlation as follows:

Previous experience with technology has a *low positive correlation* with *perceived usefulness* (rho=.27), *ease of use* (rho=.25), and *intention to use* (rho=.22) of AI tools in education; while *institutional support* shows a *low correlation* with *intention to use* (rho=.37) and *ease of use* (rho=.27), but a *moderate correlation* with *perceived usefulness* (rho=.46).

The *low positive correlation* between the *intention to use* AI tools and external variables, such as *previous experience with technology* (rho=.22) and *institutional support* (rho=.37), remains important but not crucial, highlighting the importance of considering contextual factors in the implementation of AI tools in higher education.

These correlations led to the development of H3; a Kruskal-Wallis test was performed to compare the influence of *previous experience with technology* on *perceived usefulness* ($X^2=14.72$, $p<.05$), *ease of use* ($X^2=11.91$, $p<.05$), and *intention to use* ($X^2=9.751$, $p<.05$). This means that the null hypothesis of independence between *previous experience with technology* and the TAM variables cannot be accepted. This influence stems from the fact that students have already had contact with the use of digital technologies applied to education in the last three years, which allows them to feel comfortable exploring new technologies for their learning on their own and using them for their academic activities.

Similarly, the U-Mann Whitney test was applied to compare *institutional support* as a predictor of *perceived usefulness* ($U=2724.50$, $p<.001$), *ease of use* ($U=3170$, $p<.001$) and *intention to use* ($U=2778$, $p<.001$). This means that the null hypothesis of independence of institutional support cannot be accepted; therefore, AI acceptance behavior depends on *institutional support*. This is because the university provides its students with the necessary resources to learn how to use AI tools and has trained teachers who support them and encourage the use of this technology for learning.

To test H4, the Kruskal-Wallis test was performed to compare the faculty groups with the TAM variables, revealing that there are no significant differences between *academic faculties* and *perceived usefulness* ($X^2=9.03$, $p>.05$), *ease of use* ($X^2=3.25$, $p>.05$), and *intention to use* ($X^2=4.79$, $p>.05$); therefore, the academic faculty is not a determining factor for the perception of the TAM variables. These results coincide with the findings of Zawacki-Richter et al. (2019) and Chen, Xie, et al. (2020), who found in a systematic review that AI is interdisciplinary; that is, it does not affect the perception of the variables in the TAM model. These results confirm that institutional AI implementation strategies can be developed with unified approaches that do not require significant differentiation by faculty, thus optimizing resources and technology adoption efforts.

Continuing with the analysis of the results, a hierarchical regression model was developed to evaluate the moderation of the variables *Previous Experience* and *Institutional Support* with the TAM variables. To do this, the variables were centered by subtracting their respective means to reduce multicollinearity and facilitate interpretation. These centered values were used to create the interaction terms of the TAM variables with the moderating variables.

The hierarchical regression analysis shows that *perceived usefulness* and *ease of use* are robust predictors of the *intention to use* AI tools, while *previous experience with technology* and *institutional support* only become

relevant when they interact with the main predictors. The final model explains 53% of the variance in the *intention to use*.

The results of the three hierarchical models analyzed to predict the *intention to use* AI tools in higher education are presented in tables 4 - 8.

Table 4: Hierarchical models of the intention to use AI tools:

Model	Variables included
1	Perceived usefulness, Ease of use
2	Perceived usefulness, Ease of use, Previous experience with technology, Institutional support
3	All of the above + Interactions (Usefulness \times Experience, Ease \times Experience, Usefulness \times Support, Ease \times Support)

Table 5: Model Adjustment Statistics

Model	R	R ²	Adjusted R ²	Standar Error	F (df)	p
1	.70	.48	.48	.39	87.49 (2,187)	<.001
2	.70	.49	.48	.39	44.49 (4,185)	<.001
3	.73	.53	.51	.38	25.38 (8,181)	<.001

The final model (Model 3) explains 53% of the variance in intention to use, showing a substantial improvement by including interaction terms.

Regression Coefficients and Significance

Table 6: Model 1: Main predictors

Variable	B	Std. Error	Beta	t	p
(Constant)	.29	.18	.00	1.60	.111
Perceived usefulness	.65	.07	.56	9.55	<.001
Ease of use	.21	.05	.23	3.88	<.001

Table 7: Model 2: Adding external variables

Variable	B	Std. Error	Beta	t	p
(Constant)	.23	.20	.00	1.16	.249
Perceived usefulness	.60	.08	.52	7.85	<.001
Ease of use	.20	.05	.22	3.73	<.001
Previous experience with technology	.03	.05	.03	0.48	.632
Perceived institutional support	.10	.07	.09	1.47	.143

Table 8: Model 3: Including interactions

Variable	B	Std. Error	Beta	t	p
(Constant)	-.23	.32	.00	-.72	.474
Perceived usefulness	.73	.11	.63	6.39	<.001
Ease of use	.23	.05	.25	4.30	<.001
Previous experience with technology	.05	.06	.05	0.83	.406
Perceived institutional support	.05	.07	.05	0.82	.413
Interaction between usefulness and previous experience	.35	.11	.31	3.25	.001
Interaction between ease of use and previous experience	.28	.11	.22	2.51	.013
Interaction between usefulness and institutional support	.22	.20	.10	1.08	.281
Interaction between ease of use and institutional support	.15	.11	.08	1.33	.185

The results present the model with the variables *Previous Experience in Technology* and *Institutional Support* as moderators of the TAM variables, finding that:

- *Perceived usefulness* and *ease of use* are significant and consistent predictors of *intention to use* across all models ($p < .001$).
- *Previous experience in technology* and *institutional support* are not significant direct predictors ($p > .05$), but their interactions with the main predictors are:

- *The Utility × Previous Experience* ($\beta = .31$, $p = .001$) and *Ease × Previous Experience* ($\beta = .22$, $p = .013$) interactions are significant, indicating that the effect of *utility* and *ease of use* on intention to use is stronger in students with greater *technological experience*.
- Interactions with *institutional support* do not reach statistical significance.
- The final model (Model 3) increases the explained variance ($R^2 = .53$), demonstrating the importance of considering moderating effects.

CONCLUSIONS

The results of this research provide solid empirical evidence that should guide change in organizational culture toward pedagogical innovation as an institutional value, the development of specific pedagogical policies and strategies to maximize the successful adoption of artificial intelligence tools in the university context.

The *high* correlation between *intention to use* and *perceived usefulness* ($\rho = .65$) and the *moderate* correlation with *ease of use* ($\rho = .46$) reveal patterns of acceptance that require structured and differentiated institutional responses. This finding ($\rho = .65$) is in line with previous research and instrument validation on the adoption of educational technologies (Chen, Zou, et al., 2020; Gálvez-Marquina et al., 2024; Scherer et al., 2019) and recent meta-analyses confirming a high relationship between TAM variables and the acceptance and adoption of educational AI tools (Ali et al., 2024); while $\rho = .46$ is because students are willing to put effort into learning how to use AI tools if they perceive the potential usefulness is positive and moderate, which is close to the results obtained by Navarro et al. (2023) compared with a $\rho = .56$ and Criollo-C et al. (2023) who identified that students consider that emerging technologies are directly proportional to their academic performance so they are willing to learn to use them.

These findings can be considered when formulating strategies for more effective implementation of AI in higher education, thus contributing to the evolution of teaching and learning methods in the digital age.

1. The variables of the Technology Acceptance Model (TAM) are *positively related* to university students' acceptance of the use of AI tools in education.
2. The external variables of *previous experience with technology* and *institutional support* are *positively related* to the TAM variables, and are also predictors of the acceptance of AI in university higher education.
3. The academic faculties of the participating students do not affect the acceptance of AI tools in university higher education given their transversality, validating the universal applicability of the TAM for AI tools regardless of the specific field of study.

These findings are consistent with other studies that emphasize the importance of context in the adoption of educational technologies (Holmes et al., 2019, p. 161), suggesting that the type and quality of previous experience modulates its influence on intention to use. Criollo-C et al. (2023) found that technological familiarity acquired during 2020-2023 acts as a catalyst for the adoption of new educational technologies. The phenomenon has been conceptualized by Morocho Pintag et al. (2025, p. 2842) as *fostering AI skills* "essential for maximizing the benefits of AI and digitization in society, promoting their adoption in a responsible and equitable manner".

As for institutional support, recent studies demonstrate its critical role as an enabler of adoption. Khushalani (2025) reported that institutions that provide proactive academic support enhance human-centered services. Recent empirical evidence consistently supports these findings. Coreas-Flores & Romero-Argueta (2024) found that students perceive virtual learning environments that institutionally support their academic processes as useful. For its part, the group on artificial intelligence in higher education at the Diálogo Interamericano (2025) identified that higher education institutions have implemented good practices to ensure the adoption of AI, including: curriculum adaptation, adjustments to their assessment strategies, teacher training, and student support (face-to-face tutoring, expanded access to devices and resources, and partnerships to reduce the digital divide).

Higher education institutions should develop implementation policies that recognize the differential importance of the factors identified in this study. The predominance of *perceived usefulness* as the main predictor suggests that institutional policies should prioritize clear and tangible demonstration of the academic benefits of AI tools over ease of use. This implies establishing impact assessment frameworks that document improvements in academic performance, learning efficiency, and the quality of student work.

Evidence on the influence of *institutional support* on *perceived usefulness* ($\rho = .46$) calls for the establishment of regulatory frameworks that not only authorize the use of AI but also actively promote its responsible adoption. Policies should include clear protocols for student data protection, algorithmic transparency, and equity in

technological access. In addition, it is essential to establish educational AI ethics committees to oversee implementation and continuously evaluate the impact of these technologies on the academic community.

The findings on the dependence of *usefulness* and *ease of use* on *institutional support* justify a budget redistribution that prioritizes investment in educational AI infrastructure. Institutions must allocate specific resources for the acquisition of AI tool licenses, the maintenance of technological infrastructure, and, crucially, the creation of specialized technical-pedagogical support units that act as facilitators of adoption.

This same positive correlation highlights the critical need to develop teacher training programs that go beyond basic technical training. Teachers require specialized training in three areas: technical skills to operate AI tools, pedagogical skills to integrate AI into existing teaching methodologies, and ethical skills to manage the moral and professional implications of using AI in education.

These programs should include practical workshops where teachers can directly experiment with AI tools in simulated teaching contexts, pedagogical innovation labs where they can develop specific applications for their disciplines, and spaces for ethical reflection on the transformative impact of AI on their professional roles.

Institutions should create support ecosystems that include pedagogical innovation centers with staff specialized in educational AI, networks of innovative teachers who share experiences and best practices, priority access to premium AI tools for pedagogical experimentation, institutional time for experimentation and development of AI skills, and academic recognition systems that value pedagogical innovation with AI.

On the other hand, the results regarding students' willingness to invest effort when they perceive usefulness demand training strategies that emphasize concrete academic benefits rather than technical ease. Institutions should develop AI literacy programs that include practical demonstrations of improved academic performance, workshops on specific tasks for each degree program, and peer-to-peer mentoring sessions where students with greater technological experience support their peers.

The evidence of insignificant differences between faculties, contrary to international patterns, suggests a unique opportunity to develop cross-cutting but contextually relevant curriculum integration methodologies. Each faculty should develop specific use cases that demonstrate how AI can solve particular academic problems in their discipline, create interdisciplinary collaborative projects that leverage convergence in attitudes toward AI, and establish pedagogical experimentation labs where students and teachers co-create innovative applications.

The findings on the influence of *prior experience* (low but significant correlations) indicate the need for learning paths that take into account varying levels of technological competence. Institutions should implement digital skills assessment systems upon admission, technology leveling programs for students with less experience, specialized tutorials in educational AI available throughout the academic cycle, and physical and virtual spaces dedicated to experimentation with AI tools.

Regarding the implementation of these initiatives, empirical evidence suggests a phased approach that begins with pilot projects in areas of greatest receptivity, continues with gradual expansion based on evidence of success, and includes ongoing evaluation of the impact on TAM variables. Each phase should include feedback mechanisms that allow for real-time adjustments, rigorous documentation of best practices, and systematization of lessons learned for replication in other areas.

The *intention to use* AI tools among university students is mainly determined by *perceived usefulness* and *ease of use*. However, these effects are significantly enhanced in students with greater *prior experience* in technology, suggesting the need for differentiated training and support strategies. Institutional support, although relevant in the literature, did not show significant direct or moderating effects in this model.

The results of the hierarchical regression model confirm the centrality of *perceived usefulness* and *ease of use* as predictors of the *intention to use* AI tools, with significant moderating effects of prior experience with technology.

The hierarchical model analyzed shows that *perceived usefulness* and *ease of use* are the most robust predictors of *AI usage intention*, explaining up to 53% of the variance ($R^2 = .53$). These results are consistent with international findings:

In the present study, *perceived usefulness* and *ease of use* are found to be the main predictors of *intention to use*. The hierarchical model analyzed shows that *perceived usefulness* ($\beta = .63-.56$) and *ease of use* ($\beta = .25-.23$) are the most robust predictors of *AI usage intention*, explaining up to 53% of the variance ($R^2 = .53$). These results

are above the values reported in meta-analyses and systematic reviews on TAM in educational AI contexts, where *perceived usefulness* has a coefficient of $\beta = 0.374$, while *ease of use* does not have a significant impact (Vivanco Enriquez et al., 2025). The variance explained by the model is also above $R^2 = 0.435$ reported internationally by Torres Nabel & Basilio Rizo (2025), which reinforces the validity and robustness of the results obtained.

Although *prior experience* with technology did not show a significant direct effect on *intention to use*, relevant moderating effects were identified: the interaction between *perceived usefulness* and *prior experience* ($\beta = .31$, $p = .001$), and between *ease of use* and *prior experience* ($\beta = .22$, $p = .013$) were significant. This indicates that the impact of the main TAM predictors is stronger in students with greater technological experience.

These findings are consistent with recent research that has incorporated moderation analysis and multivariate models, which shows that prior experience amplifies the relationship between *usefulness/ease of use* and *intention to use* (Acosta-Enriquez et al., 2024). Similarly, they have reported that students with less *prior experience* with technology have higher expectations of effort in relation to their *intention to use* AI in higher education. For their part, Choudhary et al. (2025) identified that students in technical careers, who by their nature have more experience with the use of technology, show more favorable attitudes toward the adoption of AI in higher education.

In contrast to some of the literature, *institutional support* did not show any significant direct or moderating effects on the *intention to use* in the model analyzed. Although the literature recognizes *institutional support* as a key facilitator for AI adoption (García-Peña, 2021; Zawacki-Richter et al., 2019), several recent studies have found that its impact is mainly manifested through improved perceptions of *usefulness* and *ease of use*, rather than as a direct predictor of *intention to use*, as expressed by Zhao et al. (2025), who identified that *institutional support* improves *ease of use* ($\beta = 0.288$, $p < 0.001$) and *perceived usefulness* ($\beta = 0.179$, $p < 0.001$). The findings of Zhao et al. (2025) explain 47.8% of the variance in student attitude ($R^2 = 0.478$) and 59.5% in *intention to use* ($R^2 = 0.595$). *Institutional support* in the form of resources, training, and encouragement is essential to bridge the gap between students' technical skills and technology adoption by leveraging *institutional support* infrastructure (Sova et al., 2024). This suggests that *institutional support* should be operationalized in a more specific and visible way to directly influence *adoption intent*. This implies that universities can offer training and instruction among students, fostering environments in which they feel confident to learn and use AI tools like any other technological support in the classroom (Ifenthaler & Schweinbenz, 2013).

In summary, the results of this research provide a solid empirical basis for the development of institutional strategies that not only promote the initial adoption of AI tools but also ensure their sustainable and scalable integration into the educational ecosystem. Evidence on the importance of students' prior experience in using technology and institutional support as moderators of intention to use based on perceived usefulness and ease of use offers higher education institutions an evidence-based roadmap for successfully addressing educational digital transformation, positioning them as leaders in the responsible and innovative integration of artificial intelligence in 21st-century higher education.

For future research, it is recommended:

- Explore the acceptance of AI tools in different cultural and geographical contexts.
- Investigate the long-term impact of AI tool use on learning outcomes.
- Examine the ethical and privacy implications of using AI in higher education.

Limitations

This study has several limitations that should be considered when interpreting the results. First, the cross-sectional design used prevents establishing causal relationships between the variables of the Technology Acceptance Model and the adoption of AI tools. The sample was limited to students from a specific geographic region of El Salvador, which significantly restricts the generalization of the findings.

Generalization beyond the Salvadoran context faces particular challenges due to cultural differences, technological infrastructure, and educational systems that characterize developing countries. Cultural factors may moderate the relationships proposed by TAM, especially in societies with different individualistic/collectivist values and levels of trust in technology. In addition, digital divides and varying degrees of digital literacy prevalent in the region limit the direct transferability of these results to contexts with different levels of technological development.

The exclusive use of self-report measures is another significant limitation. These instruments are susceptible to social desirability bias, personal presentation, and memory errors when recalling previous interactions, which can

distort reported perceptions of the *usefulness* and *ease of use* of AI tools. Self-report measures often overestimate actual technology use and show weak correlations with objective performance assessments.

It is recommended that future research incorporate longitudinal designs, diversify samples geographically and culturally, and triangulate self-report data with objective measures of technology use to improve the validity and generalizability of findings.

REFERENCIAS

Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. *Computers in Human Behavior*, 56, 238–256. <https://doi.org/10.1016/J.CHB.2015.11.036>

Acosta-Enriquez, B. G., Ramos Farroñan, E. V., Villena Zapata, L. I., Mogollon Garcia, F. S., Rabanal-León, H. C., Morales Angaspilco, J. E., & Bocanegra, J. C. S. (2024). Acceptance of artificial intelligence in university contexts: A conceptual analysis based on UTAUT2 theory. *Heliyon*, 10(19), e38315. <https://doi.org/10.1016/j.heliyon.2024.e38315>

Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). “Extending the Technology Acceptance Model (TAM) to Predict University Students’ Intentions to Use Metaverse-Based Learning Platforms”. *Education and Information Technologies*, 28(11), 15381–15413. <https://doi.org/10.1007/S10639-023-11816-3>

Ali, I., Warraich, N. F., & Butt, K. (2024). Acceptance and use of artificial intelligence and AI-based applications in education: A meta-analysis and future direction. *Information Development*, 41(3), 859–874. <https://doi.org/10.1177/0266669241257206>

Almenara, J. C., & Gimeno, A. M. (2019). Las TIC y la formación inicial de los docentes. Modelos y competencias digitales. *Profesorado, Revista de Currículum y Formación Del Profesorado*, 23(3), 247–268. <https://doi.org/10.30827/PROFESORADO.V23I3.9421>

Araujo Bedoya, G. J., Guerra Delgado, L. R., Bastidas Santana, V. G., Diaz Berruz, C. F., & Planta Ulloa, J. P. (2024). *Educación y tecnología digital* (CID - Centro de Investigación y Desarrollo, Ed.; 1a.). CID Editorial. https://doi.org/https://doi.org/10.37811/cli_w1041

Arroyave Villa, N. A. (2024). El enfoque de las microcredenciales en la Educación Superior. *Rastros Rostros*, 26(1), 1–40. <https://doi.org/10.16925/2382-4921.2024.01.09>

Berrú Torres, C. P., Cevallos Simancas, M. H., Zambrano Vélez, L. V., Vera Ferrin, R. M., Iñiguez Granda, I. E., Cedeño Romero, M. E., Villamar Holguín, R. del R., Jiménez Cando, Á. N., Berrú Torres, C. P., Cevallos Simancas, M. H., Zambrano Vélez, L. V., Vera Ferrin, R. M., Iñiguez Granda, I. E., Cedeño Romero, M. E., Villamar Holguín, R. del R., & Jiménez Cando, Á. N. (2025). La revolución digital en el aula: herramientas y estrategias para el siglo XXI. *Revista InveCom*, 5(1). <https://doi.org/https://doi.org/10.5281/zenodo.10966789>

Bond, M., Marín, V. I., Dolch, C., Bedenlier, S., & Zawacki-Richter, O. (2018). Digital transformation in German higher education: student and teacher perceptions and usage of digital media. *International Journal of Educational Technology in Higher Education*, 15(1), 1–20. <https://doi.org/10.1186/S41239-018-0130-1/FIGURES/3>

Bravo Ortega, Y. I. (2025). Aprendizaje digital de la Inteligencia Artificial en el aula y transformación de la educación y la sociedad contemporánea. *LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades*, 6(3), 2899–2910. <https://doi.org/10.56712/latam.v6i3.4167>

Cabero-Almenara, J., Marín-Díaz, V., & Sampedro-Requena, B. Ester. (2018). Aceptación del Modelo Tecnológico en la enseñanza superior. *Revista de Investigación Educativa*, 36(2), 435–453. <https://doi.org/10.6018/RIE.36.2.292951>

Carrión Salinas, G., & Andrade-Vargas, L. (2024). Los desafíos de la Inteligencia Artificial en la educación en un mundo tecnologizado. *European Public & Social Innovation Review*, 9, 1–15. <https://doi.org/10.31637/epsir-2024-905>

Chen, X., Xie, H., Zou, D., & Hwang, G. J. (2020). Application and theory gaps during the rise of Artificial Intelligence in Education. *Computers and Education: Artificial Intelligence*, 1, 100002. <https://doi.org/10.1016/J.CAEAI.2020.100002>

Chen, X., Zou, D., Cheng, G., & Xie, H. (2020). Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: A retrospective of all volumes of Computers & Education. *Computers & Education*, 151, 103855. <https://doi.org/10.1016/J.COMPEDU.2020.103855>

Choudhary, S., Kumar Niroula, A., & Datt Pant, G. (2025). Beyond Discipline: Quantifying the Impact of Prior AI Experience and Digital Literacy on Student Acceptance of Educational AI. *Nepal Journal of Multidisciplinary Research*, 8(2), 186–195. <https://doi.org/10.3126/NJMR.V8I2.78027>

Coreas-Flores, E. O., & Romero-Argueta, J. de J. (2024). Academic Support of Virtual Environments Perceived by Higher Education Students During Covid-19. *TOJET: The Turkish Online Journal of Educational Technology*, 23(4), 8–20. <http://www.tojet.net/articles/v23i4/2342.pdf>

Criollo-C, S., González-Rodríguez, M., Guerrero-Arias, A., Urquiza-Aguilar, L. F., & Luján-Mora, S. (2023). A Review of Emerging Technologies and Their Acceptance in Higher Education. *Education Sciences 2024, Vol. 14, Page 10, 14(1)*, 10. <https://doi.org/10.3390/EDUCSCI14010010>

Cuenca Aguilar, B. (2022). Aprendizaje y evaluación adaptativa: una opción innovadora. In T. García Camacho & M. I. Díaz del Castillo Prado (Eds.), *El Modelo Educativo del CCH. Reflexiones ante el contexto actual* (1st ed., pp. 233–241). <http://memoria.cch.unam.mx/index.php/revista/45>

Davis, F. D. (1986). *A technology acceptance model for empirically testing new end-user information systems : theory and results* [Tesis doctoral, Massachusetts Institute of Technology]. <https://dspace.mit.edu/handle/1721.1/15192>

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. *MIS Quarterly: Management Information Systems*, 13(3), 319–340. <https://doi.org/10.2307/249008>

Diálogo Interamericano. (2025). *Hacia un marco institucional para apropiar la inteligencia artificial en universidades latinoamericanas*. <https://thedialogue.org/wp-content/uploads/2025/06/Marco-Institucional-IA-LATAM-1.pdf>

Drigas, A., & Ioannidou, R.-E. (2012). Artificial Intelligence in Special Education: A Decade Review. *International Journal of Engineering Education*, 28(6), 1366–1372.

Echeverría Quiñonez, B. R., & Otero Mendoza, L. K. (2025). Inteligencia Artificial Generativa como herramienta pedagógica: una revisión sistemática sobre su impacto en los procesos de enseñanza-aprendizaje. *Revista Científica Multidisciplinaria SAGA*, 2(3), 537–550. <https://doi.org/10.63415/SAGA.V2I3.223>

Gálvez-Marquina, M. C., Pinto-Villar, Y. M., Mendoza-Aranzamendi, J. A., & Anyosa-Gutiérrez, B. J. (2024). Adaptación y validación de un instrumento para medir las actitudes de los universitarios hacia la inteligencia artificial. *Revista de Comunicación*, 23(2), 125–142. <https://doi.org/10.26441/RC23.2-2024-3493>

García-Peñalvo, F. J. (2021). Transformación digital en las universidades: Implicaciones de la pandemia de la COVID-19. *Education in the Knowledge Society (EKS)*, 22, e25465–e25465. <https://doi.org/10.14201/EKS.25465>

Goel, A. K., & Polepeddi, L. (2018). *A Virtual Teaching Assistant for Online Education*. <https://repository.gatech.edu/server/api/core/bitstreams/7bfca4c2-835f-4edd-9ddd-83808512bbf2/content>

Gros, B., Sánchez, J.-A., García, I., & Alonso, C. (2020). Cuatro décadas de políticas para integrar las tecnologías digitales en el aula en Cataluña: acciones, logros y fracasos. *Digital Education Review*, 37, 79–95. <https://dialnet.unirioja.es/servlet/articulo?codigo=7615202&info=resumen&idioma=SPA>

Gros Salvat, B., & Cano García, E. (2021). Procesos de feedback para fomentar la autorregulación con soporte tecnológico en la educación superior: Revisión sistemática. *RIED. Revista Iberoamericana de Educación a Distancia*, 24(2), 107. <https://doi.org/10.5944/ried.24.2.28886>

Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. In *Journal of Computer Assisted Learning* (Issue 4). Center for Curriculum Redesign. <https://curriculumredesign.org/our-work/artificial-intelligence-in-education/>

Idowu, J. A. (2024). Debiasing Education Algorithms. *International Journal of Artificial Intelligence in Education*, 1–31. <https://doi.org/10.1007/S40593-023-00389-4/TABLES/6>

Ifenthaler, D., & Schweinbenz, V. (2013). The acceptance of Tablet-PCs in classroom instruction: The teachers' perspectives. *Computers in Human Behavior*, 29(3), 525–534. <https://doi.org/10.1016/J.CHB.2012.11.004>

Khushalani, B. (2025). Empowering Student Success through AI-Driven Collaboration. *EDUCASE*. <https://er.educause.edu/articles/2025/5/empowering-student-success-through-ai-driven-collaboration>

King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. *Information & Management*, 43(6), 740–755. <https://doi.org/10.1016/J.IJM.2006.05.003>

León-Garrido, A., Gutiérrez-Castillo, J. J., Barroso-Osuna, J. M., & Cabero-Almenara, J. (2025). Evaluación del uso y aceptación de apps móviles en educación superior mediante el modelo TAM. *RIED-Revista Iberoamericana de Educación a Distancia*, 28(1), 107–126. <https://doi.org/10.5944/RIED.28.1.40988>

Luan, H., & Tsai, C.-C. (2021). A Review of Using Machine Learning Approaches for Precision Education. *Educational Technology & Society*, 24(1), 250–266. <https://drive.google.com/file/d/1IptaihHzzIr5A70kJ8iSUu56D4U7Zgyk/view>

Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An argument for AI in Education. In *UCL Knowledge Lab: London, UK*. Pearson. <https://www.pearson.com/content/dam/corporate/global/pearson-dot-com/files/innovation/Intelligence-Unleashed-Publication.pdf>

Luna Fox, S. B., & Paredes Rosado, K. A. (2024). Aprendizaje personalizado en educación matemática con inteligencia artificial: conectando fundamentos teóricos con aplicaciones prácticas y estrategias instruccionales adaptativas. *Journal of Multidisciplinary Novel Journeys & Explorations*, 2(1), 1–19. <https://doi.org/10.63688/m6ceew69>

Mayorga-Ases, M. J., Martínez-Pérez, S. C., Cosquillo-Chida, J. L., & Rina Sofía, A.-C. (2025). El uso de plataformas de aprendizaje online: ventajas y desafíos para los Docentes. *593 Digital Publisher CEIT*, 10(1–2), 369–388. <https://doi.org/10.33386/593DP.2025.1-2.3071>

Miao, F., & Holmes, W. (2024). *Guía para el uso de IA generativa en educación e investigación - UNESCO Digital Library*. <https://unesdoc.unesco.org/ark:/48223/pf0000389227>

Mias, C. D. (2018). *Metodología de investigación Estadística Aplicada e instrumentos en Neuropsicología* (Encuentro Grupo Editor, Ed.; 1a.). Editorial Brujas.

Modesto Acosta, C., Gil Gamboa, K. de los A., & Rosado Espinoza, J. D. (2024). El papel de la inteligencia artificial en la educación contemporánea: análisis de sus aplicaciones y beneficios pedagógicos. *Multidisciplinary Journal of Sciences, Discoveries, and Society*, 2(4), 1–13. <https://doi.org/10.71068/bkhndn04>

Morales Chan, M., Barchino Plata, R., Medina, J. A., Alario-Hoyos, C., Hernández Rizzardini, R., & De La Roca, M. (2018). Analysis of Behavioral Intention to Use Cloud-Based Tools in a MOOC: A Technology Acceptance Model Approach. *Journal of Universal Computer Science*, 24(8), 1072–1089. <https://doi.org/https://doi.org/10.3217/jucs-024-08-1072>

Morocho Cevallos, R. A., Cartuche Gualán, A. P., Tipan Llanos, A. M., Guevara Guevara, A. M., & Ríos Quiñónez, M. B. (2023). Integración de la Inteligencia Artificial en la Educación. *Ciencia Latina Revista Científica Multidisciplinar*, 7(6), 2032–2053. https://doi.org/10.37811/CL_RCM.V7I6.8832

Morocho Pintag, J. A., Yaselga Auz, W. F., Lizano Jácome, M. A., & Medina Romero, M. Á. (2025). Competencias digitales y de IA en la educación: transformando a los estudiantes para liderar el futuro del trabajo. *Reincisol*, 4(7), 2841–2864. [https://doi.org/10.59282/REINCISOL.V4\(7\)2841-2864](https://doi.org/10.59282/REINCISOL.V4(7)2841-2864)

Mustofa, R. H., Kuncoro, T. G., Dwi Atmono, H., & Dwi Hermawan, S. (2025). Extending the technology acceptance model: The role of subjective norms, ethics, and trust in AI tool adoption among students. *Computers and Education: Artificial Intelligence*, 8, 100379. <https://doi.org/10.1016/J.CAEAI.2025.100379>

Palella Stracuzzi, S., & Martins Pestana, F. (2012). *Metodología de la Investigación cuantitativa* (3a. Ed., 1a. reimpr.). Felupel.

Pedreño Muñoz, A. (2022). Hacia el liderazgo tecnológico en la aplicación de la inteligencia artificial en las universidades españolas. In F. Llorens Largo & R. López Meseguer (Eds.), *Transformación digital de las universidades: hacia un futuro postpandemia* (I, pp. 46–53). Fundación Europea Sociedad y Educación. <https://dialnet.unirioja.es/servlet/articulo?codigo=8481482>

Pozo, J.-I., Cabellos, B., & Pérez Echeverría, M. del P. (2024). Has the educational use of digital technologies changed after the pandemic? A longitudinal study. *PLOS ONE*, 19(12), e0311695. <https://doi.org/10.1371/journal.pone.0311695>

Robles Morales, R. E. (2025). Factores determinantes en la adopción de inteligencia artificial en la educación superior dominicana. *Cuaderno de Pedagogía Universitaria*, 22(43), 79–103. <https://doi.org/10.29197/CPU.V22I43.647>

Romani Pillpe, G., Macedo Inca, K. S., Soto Loza, G. E., Franco Guevara, A. M., & Ore Choque, M. K. (2025). Revisión sistemática de inteligencia artificial generativa (GenIA) para el diseño de experiencias de aprendizaje, 2020-2025. *Espacios*, 46(03), 13–27. <https://doi.org/10.48082/espacios-a25v46n03p02>

Ruiz Muñoz, G. F., Cruz Navarrete, E. L., Paz Zamora, Y. E., & Narváez Vega, E. A. (2025). Educación inclusiva con inteligencia artificial (IA): personalización curricular para estudiantes con necesidades educativas especiales (NEE). *Revista Social Fronteriza*, 5(3), e704. [https://doi.org/10.59814/resofro.2025.5\(3\)704](https://doi.org/10.59814/resofro.2025.5(3)704)

Sancho-Gil, J. M., Rivera-Vargas, P., & Miño-Puigcercós, R. (2020). Moving beyond the predictable failure of Ed-Tech initiatives. *Learning, Media and Technology*, 45(1), 61–75. <https://doi.org/10.1080/17439884.2019.1666873>

Santini, F. de O., Sampaio, C. H., Rasul, T., Ladeira, W. J., Kar, A. K., Perin, M. G., & Azhar, M. (2025). Understanding students' technology acceptance behaviour: A meta-analytic study. *Technology in Society*, 81, 102798. <https://doi.org/10.1016/J.TECHSOC.2024.102798>

Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers' adoption of digital technology in education. *Computers & Education*, 128, 13–35.
<https://doi.org/10.1016/j.compedu.2018.09.009>

Siemens, G. (2013). Learning Analytics. *American Behavioral Scientist*, 57(10), 1380–1400.
<https://doi.org/https://doi.org/10.1177/0002764213498851>

Sova, R., Tudor, C., Tartavulea, C. V., & Dieaconescu, R. I. (2024). Artificial Intelligence Tool Adoption in Higher Education: A Structural Equation Modeling Approach to Understanding Impact Factors among Economics Students. *Electronics*, 13(18), 3632.
<https://doi.org/10.3390/ELECTRONICS13183632>

Torres Nabel, L. C., & Basilio Rizo, L. I. (2025). Inteligencia Artificial Generativa en estudiantes de Educación Media Superior en México. El uso de ChatGPT en estudiantes del Centro de Enseñanza Técnica Industrial (CETI). *Ciencia Latina Revista Científica Multidisciplinaria*, 9(4), 11317–11353.
https://doi.org/10.37811/CL_RCM.V9I5.19721

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other Tutoring Systems. *Educational Psychologist*, 46(4), 197–221.
<https://doi.org/https://doi.org/10.1080/00461520.2011.611369>

Venkatesh, V., & Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. *Decision Sciences*, 39(2), 273–315. <https://doi.org/10.1111/j.1540-5915.2008.00192.x>

Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. *Management Science*, 46(2), 186–204.
<https://doi.org/10.1287/mnsc.46.2.186.11926>

Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. *MIS Quarterly: Management Information Systems*, 27(3), 425–478.
<https://doi.org/10.2307/30036540>

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. *MIS Quarterly*, 36(1), 157.
<https://doi.org/10.2307/41410412>

Vera, F., & García-Martínez, S. (2022). Creencias y prácticas de docentes universitarios respecto a la integración de tecnología digital para el desarrollo de competencias genéricas. *Revista Colombiana de Educación*, 84, e206. <https://doi.org/10.17227/RCE.NUM84-11582>

Vivanco Enriquez, J. L., Espinoza Gómez, S. T., Mateo Nuñez, H. R., Vilca Ramirez, P. A., & Chincha Lleclish, J. M. (2025). Modelado de la adopción de herramientas de inteligencia artificial en la educación superior: un enfoque basado en TAM. *Estrategia y Gestión Universitaria*, 13(2), e9024.
<https://doi.org/https://doi.org/10.5281/zenodo.17653760>

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? *International Journal of Educational Technology in Higher Education*, 16(1), 1–27.
<https://doi.org/10.1186/S41239-019-0171-0>

Zhao, Z., An, Q., & Liu, J. (2025). Exploring AI tool adoption in higher education: evidence from a PLS-SEM model integrating multimodal literacy, self-efficacy, and university support. *Frontiers in Psychology*, 16, 1619391. <https://doi.org/10.3389/FPSYG.2025.1619391/FULL>

Zhi, R., & Wang, Y. (2024). On the relationship between EFL students' attitudes toward artificial intelligence, teachers' immediacy and teacher-student rapport, and their willingness to communicate. *System*, 124, 103341. <https://doi.org/10.1016/J.SYSTEM.2024.103341>