

Modeling Behavior of Students in E-Learning Courses on the Basis of Use Interactive Animations

Martin Magdin

Department of Computer Science, Faculty of Natural Science, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74 Nitra mmagdin@ukf.sk

Milan Turčáni

Department of Computer Science, Faculty of Natural Science, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74 Nitra mturcani@ukf.sk

ABSTRACT

Authors in their contribution deal with modeling the behavior of user in e-learning course based on the use of interactive animations. Nowadays, E-learning courses form a standard part of educational process. However, it is not so easy to determine the way students work with study material, whether they make use of it in order to increase didactic effectiveness of e-course. In the contribution authors point to the non-traditional method of recording students' activities and reverse transition to previous lessons using interactive animations, which have been implemented into the study material. The method of recording students' activities was implemented in the academic years 2009/2010 through 2013/2014. Students were divided into two groups – experimental and reference ones. The reference group did not use interactive animations, while in the experimental group interactive animations were implemented into the study material.

Keywords: behavior of students, interactive animations, interactive matrix, transition of e-learning course.

INTRODUCTION

Computer (interactive) animations may help concretise abstract, complex concepts and phenomena in science education, thus helping students to learn more easily and more effectively (Akpinar, 2013). The questions arises as to what the reasons are which have made interactive animations a vital part of modern ecurricula, and whether there is empirical evidence to support claims that using multimedia and interactivity in e-curriculum has positive impact to cognitive development and academic achievement at students (Pinter et al., 2012). Part of study of Informatics and Information technologies in higher education, in addition to programming is eg. graphics, theory of formal languages and automata and often the different subjects with a focus on the area of computer hardware. For understand the mutual action of the individual components PC must students handle basic physical principles. This specific area of hardware is called Logical systems of computers and the students applied their knowledge not only from mathematics but also physics, acquired his studies at secondary school. Abstract and complex concepts are especially difficult for students to grasp in the traditional learning environment using traditional teaching methods. As a result, learners at different levels and ages have difficulty understanding science concepts (Chiu et al. 2002). The reasons for these difficulties have some common features such as the students' varying levels of comprehension for science concepts. This variability is true for many fundamental concepts in all branches of science such as physics, chemistry and biology (Akpinar, 2013). The thorough investigation by Sekular and Blake (1990) into how students take in information, how they learn pointed out that the learning process takes place primarily by way of sight, and since it is the most vital of our senses, it is also the most highly-developed one. It enables a person to gather information from one's surroundings, analyze these and then decide how to process based on the deduced data. Graphical representations are defined as visual aids that act as supplement to any other textual information and will concentrate learners' attention (Mayer, 1989). Such representations will have maximum effect when accompanying some learning material that is (relatively) new to the learner (Mayer and Gallini, 1990). This is especially the case with computer animation that is designed to aid long-term learning in the form of focusing learners on certain objects in the beginning (Pinter et al., 2012).

METHODOLOGY OF RESEARCH

This study investigates the effects of using interactive animations based on predict-observe-explain as a presentation tool on students' (University students) understanding of the static electricity and concepts of electronic circuits (area of computer hardware). A quasi-experimental pre-test/post-test control group design was utilized in this study. This Experiment was realized in the academic years 2009-2014 (Winter semester). The

experiment group consisted of 20 students, and the control group also of 20 students. The control group worked by normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on predict-observe-explain were used as a presentation tool.

UNIVERZITA KONŠTANTÍNA FILOZOFA V NITRE constantine the philosopher university in nitra	Zoznam všetkých kurzov -
Moja domovská stránka / Moje kurzy / Fakulta prirodných vied / Katedra	informatiky / Virtuálna katedra (2011-2012) / 1. ročník / FPV/VK/KI/AP1 / Téma 1 / Lekcia 1: Úv
Lekcia 1: Úvod do elektroniky	
1.7 Elektromagnetická indukcia	
K javu elektromagnetickej indukcie (EMI) vedú dva pokusy:	
 Ak zostavíme jednoduchý elektrický obvod s cievkou a voltmetrom a prit voltmeter výchylku. 	bližujeme tyčový magnet k cievke, ukáže voltmeter výchylku. Ak magnetom nehýbeme, neukazuje
C.	

Figure 1: Example of interactive animation (changing the position of the magnet occurs misalignment of pointer the device).

Information on activities the student carried out in the e-learning course can be obtained from the records (Configuration module).

Observation of work can be divided into four main parts:

- Live signing from the last lesson,
- A report on activities,
- Records on participants,
- Statistics.

For the sake of acquisition of an idea of the real transition of all students through an e-learning course, methods of frequency and sequential analysis are mostly used. By means of these methods it is possible to set up the so-called interactive matrix (Chráska, 2007). Based on the found patterns of users' behaviour, which are represented by sequence rules, it is possible to modify and improve the course (Munk et al, 2010). However, in order to be able to set up such type of matrix it is inevitable to filter out from the access statistics those data, which are connected with the side-show of students and they thus do not impact directly (or in a minimum possible degree) the method of acquisition of knowledge and skills. For us, such methods are for example (Nagyová, 2011):

- Initial course page view,
- Communication within the course,
- Profiles scanning.

RESULTS OF RESEARCH

Interactive matrix marked M represents a two-dimensional array of type n x n, where the number n is the number of overall activities realized by students in the course. It is possible to access the data in the matrix by means of the line number (variable i) and the column number (variable j). The matrix cells correspond to frequencies of incidence of variable j (of the given activity) after the activity i.

The creation of interactive matrix is influenced mainly by the selection of individual activities, which form header of the matrix. Activities depicted by the interactive matrix can represent, for example, the transition through individual chapters identically arrayed in line I and column j. In the following tables we present

activities of students representing transitions between individual chapters of the study material in the e-learning course Architecture of computers in the academic years 2009/2010 (Winter semester) until 2013/2014 (Winter semester).

Table 1: Interactive matrix of transitions between individual lessons in the academic year 2009/2010 (control

					group).						
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	2450	852	356	124	258	689	346	734	428	45
L1	892	0	1987	556	87	219	324	222	318	110	23
L2	634	554	0	2041	918	796	369	567	216	257	51
L3	176	652	347	0	1321	821	221	705	599	375	74
L4	841	869	490	1458	0	1878	478	756	311	338	36
L5	654	512	591	428	998	0	2887	568	850	151	111
L6	317	974	627	898	370	350	0	1655	347	185	34
L7	268	498	623	495	580	915	1331	0	1201	100	174
L8	954	825	829	461	613	558	471	434	0	1637	190
L9	438	604	268	947	864	466	420	623	350	0	1255
End study	526	249	315	185	277	216	265	170	57	46	0

Table 2: Interactive matrix of transitions between individual lessons in the academic year 2009/2010 (experimental group).

	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1629	360	847	356	785	147	324	897	489	121
L1	980	0	1322	123	784	324	472	246	146	732	13
L2	999	2401	0	1325	258	753	159	456	321	798	27
L3	589	125	1324	0	2471	125	245	587	523	348	11
L4	359	547	125	756	0	687	225	586	152	245	58
L5	458	365	852	456	1247	0	122	111	252	584	98
L6	221	456	247	247	328	122	0	122	212	523	102
L7	556	128	258	258	654	122	125	0	578	236	54
L8	768	745	265	136	369	356	578	1125	0	1456	24
L9	452	257	132	458	147	369	785	145	1184	0	1471
End study	321	253	457	563	235	236	227	123	115	111	0

 Table 3: Interactive matrix of transitions between individual lessons in the academic year 2010/2011 (control group)

					group).						
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1005	123	241	235	632	568	512	122	145	11
L1	23	0	1247	220	215	666	553	596	215	233	123
L2	57	1147	0	2343	512	213	621	232	232	515	12
L3	123	111	1238	0	1247	233	258	223	562	923	45
L4	357	254	233	266	0	3568	222	465	212	232	95
L5	159	475	253	156	556	0	1247	213	113	952	78
L6	654	44	452	696	321	265	0	2582	875	213	68
L7	789	458	563	668	545	546	1024	0	2562	565	65
L8	257	754	126	160	456	546	546	555	0	1220	23
L9	369	351	165	161	516	815	566	546	872	0	1235
End study	57	123	124	245	264	214	235	11	63	24	0

Table 4: Interactive matrix of transitions between individual lessons in the academic year 2010/2011 (experimental group).

				(· F ·		8r)·					
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1609	720	662	792	558	822	521	880	830	43
L1	955	0	1595	435	849	874	729	912	420	218	62
L2	949	1674	0	1455	896	411	862	325	930	538	30
L3	958	449	1674	0	1355	297	808	375	358	994	42
L4	221	706	667	1721	0	1279	831	480	814	266	53
L5	551	656	742	505	378	0	1004	458	609	292	20
L6	156	795	302	804	928	1429	0	1108	351	203	175

L7	663	694	251	846	956	892	676	0	1184	161	42
L8	982	356	826	703	629	710	615	1123	0	1523	262
L9	519	546	334	590	495	554	863	294	187	0	1358
End study	259	177	142	236	112	190	127	90	134	217	0

 Table 5: Interactive matrix of transitions between individual lessons in the academic year 2011/2012 (control group)

					group).						
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	2687	235	214	268	235	789	124	125	247	13
L1	74	0	1987	234	157	547	249	652	735	621	56
L2	147	2410	0	2343	457	652	234	475	578	256	14
L3	478	245	235	0	1247	145	125	221	154	152	16
L4	245	592	265	263	0	3568	262	215	262	110	24
L5	212	812	256	124	454	0	1247	512	155	823	48
L6	142	323	262	296	265	265	0	2582	652	854	78
L7	25	548	546	556	263	215	256	0	2562	158	98
L8	57	485	152	152	125	287	152	158	0	1220	91
L9	21	156	145	458	542	225	486	267	225	0	2347
End study	47	4	15	215	25	50	54	52	87	12	0

 Table 6: Interactive matrix of transitions between individual lessons in the academic year 2011/2012 (experimental group)

	<u> </u>			` I	mental		- /			7.0	
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1578	258	152	785	225	211	125	125	215	65
L1	125	0	2145	15	158	524	223	215	152	185	23
L2	325	1360	0	2254	254	258	258	872	155	375	25
L3	252	154	2451	0	1524	151	284	582	152	815	15
L4	152	522	145	1545	0	1552	216	415	562	812	12
L5	58	528	485	458	3542	0	5222	132	521	217	244
L6	158	785	212	556	569	511	0	2725	215	25	552
L7	548	542	252	541	965	232	51	0	1247	223	54
L8	215	85	895	961	215	548	514	4325	0	2251	85
L9	85	57	12	23	514	584	145	12	2152	0	3332
End study	485	595	95	558	45	54	82	48	48	21	0

 Table 7: Interactive matrix of transitions between individual lessons in the academic year 2012/2013 (control group).

					group).						
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	3564	52	562	596	592	114	596	325	147	45
L1	256	0	1045	51	155	214	124	154	128	875	5
L2	784	256	0	1384	135	357	158	152	258	761	26
L3	136	863	4578	0	2004	201	741	357	258	208	45
L4	789	853	121	182	0	3007	257	722	225	167	56
L5	568	259	158	637	475	0	1367	277	248	365	45
L6	14	972	223	951	430	457	0	1473	256	152	15
L7	26	782	182	892	942	211	247	0	4236	255	54
L8	189	784	253	261	885	555	445	115	0	2544	25
L9	288	123	127	357	226	168	496	957	5687	0	2347
End study	12	256	213	686	145	556	562	215	25	4368	0

Table 8: Interactive matrix of transitions between individual lessons in the academic year 2012/2013

				(experi	mental	group).				5	
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1032	152	56	545	589	325	591	102	147	22
L1	874	0	2567	256	262	258	894	255	235	482	56
L2	852	2223	0	1078	251	487	365	811	254	278	21
L3	472	152	157	0	1125	963	578	215	754	221	32
L4	465	254	271	1472	0	5687	145	878	241	811	247
L5	863	505	562	255	1254	0	2354	922	152	158	82

L6	552	225	522	364	125	3587	0	2235	751	235	12
L7	124	526	821	482	142	122	6211	0	4210	257	54
L8	989	222	121	212	224	127	752	1235	0	1247	25
L9	222	121	474	125	758	223	352	121	2225	0	1985
End study	22	25	48	25	58	52	23	48	16	21	0

Table 9: Interactive matrix of transitions between individual lessons in the academic year 2013/2014 (control

					group).						
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1027	258	245	215	122	171	825	150	147	15
L1	452	0	2522	148	847	512	152	821	122	215	82
L2	256	1270	0	7511	253	895	122	148	152	472	47
L3	548	472	4851	0	2233	223	872	335	522	417	42
L4	582	415	845	581	0	3231	485	512	145	213	23
L5	852	481	485	527	535	0	1233	222	852	354	51
L6	562	212	485	215	415	147	0	1845	152	212	32
L7	851	151	562	561	185	758	669	0	4154	512	21
L8	75	123	213	357	152	152	154	585	0	1522	15
L9	125	145	21	478	84	15	128	482	1223	0	4844
End study	25	58	15	21	72	15	54	14	54	4122	0

 Table 10: Interactive matrix of transitions between individual lessons in the academic year 2013/2014

 (experimental group)

(experimental group).											
	Start study	L1	L2	L3	L4	L5	L6	L7	L8	L9	End study
Start study	0	1984	245	275	365	956	214	482	147	120	32
L1	84	0	5458	523	182	482	145	124	142	754	12
L2	145	1223	0	4235	458	125	215	582	287	122	21
L3	752	123	255	0	4203	523	581	152	851	522	35
L4	635	154	452	553	0	2536	152	845	485	235	89
L5	545	152	472	851	1234	0	2347	582	215	215	12
L6	375	512	152	152	123	152	0	1208	264	823	45
L7	754	123	158	254	502	123	5145	0	1369	556	52
L8	421	215	852	125	258	921	122	1522	0	2049	59
L9	215	145	495	528	555	145	552	142	3547	0	2102
End study	69	72	125	57	82	15	56	15	82	75	0

Based on interactive matrices we can observe the frequency of incidence of j- sequentiality (activity) after the activity depicted in line i. Values, which are highlighted in colours, represent maximum values within the line and column, and at the same time, in both interactive matrices are highlighted those values, which significantly influence the transition of one activity into another (all numbers in cells above the value 1000). Maximum value in the column expresses the fact that students realized the given activity most frequently and then they proceeded in another activity with the highest maximum value situated in the nearest column. In case that in the column of the interactive matrix appears more than one maximum value, it means that student during his study returned to this activity after a while. This phenomenon can be observed in both interactive matrices (each academic year).

DISCUSSION

By modelling the behaviour of users based on their activity we succeeded in defining the real transition through the e-learning course using interactive matrices. Experiment, which was carried out in academic years 2009/2010 through 2013/2014, was focusing on defining the effectiveness of utilization of interactive animations in the e-learning course. The method we used can be considered an indirect one. Based on the results of interactive matrices in individual academic years it is clear that the experimental group, which kept the e-learning course with implemented interactive animations at their disposal for the whole period of study, kept returning to the previous study lessons at any time. This fact proves our presumption that by implementing interactive animations into the e-learning course its didactic effectiveness as well as the one of its utilization were increased. That is the following rule of proportion applies: the more frequently the students used the back transition, the more frequently they employed interactive animations and the e-learning course itself. High figures ranging between 3000 and 5000 presented in interactive matrices represent places to which the students returned based on the written test announced in advance and also the places, to which the students returned after completing the test in order to verify the correctness of what they had written into the test. It is interesting that the students in the reference group, who did not use the implemented interactive animations, employed the previous lessons only in

a minimum way, despite the announced written tests. When using a questionnaire, as a research and evaluation pedagogic tool for finding information on the knowledge, opinions or attitudes of students we found that students of the reference group were frequently frustrated and irresponsible and took the study slovenly. Since the students, who were divided into both the experimental and reference groups were offered commonly and in the same form realized lectures, the only reason for their failure can be seen just in the distinct provision of the study material.

CONCLUSIONS

The results show evidence that interactive simulation contents can be very effective tools in the learning process. It can deliver information in a very attractive way, which also can be advantageous in assembling curricula for the students who have different skill levels and learning styles. Besides that, it can help learners to understand scientific topics, with presenting important conceptual relationships (Pinter et al., 2012).

In case of implementing interactive animations into the study material we obtain not only attractive form of providing the knowledge to the students, but also the possibility to determine the way the students use to work with this material. However, in the contribution we pointed also to another fact in case of using interactive animations, which is returning to previous lessons. This step is very important within the educational process, since by means of it there comes to the confirmation and stabilization of the contents of lessons. In case of the experimental group, which employed the implemented study materials, there came to the reverse transition and thus there is a presumption that the students attempted at putting the concepts acquired by means of interactive animations into context with the concepts previously taken within the study material. In the contribution we focused only on determining the activity of the students when using interactive animations and modelling the transition through the e-learning course. Study results of both the reference and experimental groups were not evaluated in this contribution. However, based on the partial evaluation we can state that differences between the experimental and the reference groups were marginal.

Similarly, as we do, Pinter came to the conclusion: However, results also show that there is a tendency of decreasing the difference between those learners who had used the animation and those who had not. Is this because there is an increasing number of such and similar e-curricula available to students, and this kind of attractive multimedia presentations are no longer motivate students as they used to before. However according to the Felder–Silverman (Richar and Rebeca, 2005) learning style model, the animations containing a lot of visual elements, such as pictures, diagrams, flow charts etc. are preferred for the visual learning profile, while written and auditory explanations are effective with the verbal type of student. And to mention another example: students with an active profile prefer the simulation (interactive animation) which allows experimenting with the system parameters. (Pinter et al., 2012).

REFERENCES

- Akpinar, E. (2013). The use of interactive computer animations based on POE as a presentation tool in primary science teaching. *Journal of Science Education and Technology*, 1-11.
- Azar, A. (2001) Analysis of university students' misconceptions in electricity subject [Universite ogrencilerinin elektrik konusunda kavram yanılgılarının analizi]. Yeni Binyılın Basında Turkiye'de Fen Bilimleri Eg`itimi Sempozyumu Bildiri Kitabı, pp 345–350. Istanbul
- Baser, M., Geban, O. (2007) Effect of instruction based on conceptual change activities on students' understanding of static electricity concepts. *Res Sci Technolo Educ* 25(2):243–267
- Chambers, SK., Andre, T. (1997) Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulation in learning about direct current. *J Res Sci Teach* 34(2): 107–123
- Chiu, ML., Chiu, MH., Ho, CY. (2002) Using cognitive-based representations to diagnose students' conceptions of the characteristics of matter. *Proc Natl Sci Counc* ROC (D) 12(3):91–99
- Chráska, M. (2007) Metody pedagogického výzkumu, Praha: Grada Publishing.
- Guruswamy, C., Somars, MD., Hussey, RG. (1997) Students' understanding of the transfer of charge between conductors. *Phys Educ* 32:91–96
- Lee, Y., Law, N. (2001) Explorations in prompting conceptual change in electrical concepts via ontological category shift. *Int J Sci Educ* 23(2):111–149
- Mayer, R.E., Gallini, J.K. (1990). When is an illustration worth ten thousand words?, Journal of Educational Psychology, 1990, Vol. 82, No. 4,715-726
- Mayer, RE. (1989). Systematic Thinking Fostered by Illustrations in Scientific Text, Journal of Educational Psychology, 1989, Vol. 81, NTo. 2, 240-246
- Munk, M., Kapusta, J., Švec, P and Turčáni, M. (2010) 'Data advance preparation factors affecting results of sequence rule analysis in web log mining', *E a M: Ekonomie a Management*, vol. 13, no. 4, pp. 143-160.
- Nagyová, I. (2011) 'Modelování výukových procesů Petriho sítěmi', *Metódy modelovania a analýzy dát v informačných systémoch*, Nitra, pp. 49-65.

Pinter, R., Radosav, D., Cisar, S.M. (2012). Analyzing the Impact of Using Interactive Animations in Teaching. Int. J. of Computers, Communications & Control, Vol. VII (2012), No. 1 (March), pp. 147-162

Richar F., Rebeca, B. (2005.) Understanding Student Differences, Journal of Engineering Education, 94 (1), 57-72

Sekular, R., and Blake, R. (1990). Perception, Second Ed., New York, McGraw-Hill, 1990

- Sharon, KC., Thomas, A. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manipulations in learning about direct current. *J Res Sci Teach* 34(2):107–123
- Tsai, C-C. (2003). Using conflict map as an instructional tool to change student alternative conceptions in simple series electric-circuits. *Int J Sci Educ* 25(3):307–327