

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
53

Generic Assessment Rubrics for Computer Programming Courses

Aida MUSTAPHA, Noor Azah SAMSUDIN, Nureize ARBAIY, Rozlini MOHAMED, Isredza Rahmi
HAMID
Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia
Parit Raja, 86400 Batu Pahat, Johor, Malaysia
{aidam, azah, nureize, rozlini, rahmi}@uthm.edu.my

ABSTRACT
In programming, one problem can usually be solved using different logics and constructs but still producing the
same output. Sometimes students get marked down inappropriately if their solutions do not follow the answer
scheme. In addition, lab exercises and programming assignments are not necessary graded by the instructors but
most of the time by the teaching assistants or lab demonstrators. This results in grading inconsistencies in terms
of the marks awarded when the same solution is being graded by different person. To address this issue, a set of
assessment rubric is necessary in order to provide flexibility for critical and creative solutions among students as
well as to improve grading consistencies among instructors and teaching assistants or demonstrators. This paper
reports the development of assessment rubric for each domain in computer programming courses; cognitive,
psychomotor, and affective. The rubrics were then implemented for one academic semester consisting of 14
weeks. An interrater reliability analysis based on Kappa statistic was performed to determine the consistency in
using the rubrics among instructors The weighted kappa is 0.810, therefore, the strength of agreement or the
reliability of the rubric can be considered to be ‘very good’. This indicates that the scoring categories in the
rubrics are well-defined and the differences between the score categories are clear.
Keywords: Scoring, assessment rubric, computer programming, cognitive, psychomotor, affective, Kappa
statistics.

INTRODUCTION
Grading programming assignments and projects are similar to grading traditional assignments such as written
essays. The primary distinctions between them are the unique keywords or constructs across different
programming languages and the diverse possible solutions associated with a particular problem solving
techniques. Traditional assessment for computer programming assignments and projects usually depends on an
answer scheme that includes the source code as a model answer with marks allocated to specific lines of code.
This model answer is then used by the instructors to allocate marks to the students’ programs based on the
provided source code in the answer scheme.

The problem with the traditional schema-based approach of awarding marks according to a “point-per-correct-
statement” is that students are being graded based similarity of their solution to the answer scheme. This leads to
little or no consideration given to creativity and originality in the student solutions. In programming, the same
problem can usually be solved using different constructs but still producing the same output. Students often get
marked down inappropriately if their solution is not exactly the same as the instructor’s solution or alternatively
marked up if their solution is similar to the provided solution. In addition, lab exercises and programming
assignments are not necessary being graded by the instructors but most of the time by the teaching assistants or
lab demonstrators. This results in grading inconsistencies in terms of the marks awarded when the same solution
is being graded by different person. Instructors, for example, may emphasize on the design of the solutions.
Demonstrators, on the other hand, may emphasize on the programming syntax.

To address this issue, a set of assessment rubric is necessary in order to provide flexibility for critical and
creative solutions among students as well as to improve grading consistencies among instructors and teaching
assistants or demonstrators. The literature has revealed that strategies used to grade programming assessments
has evolved from grading students based on an answer scheme where marks are allocated to individual
programming statements to a more holistic and inclusive methodology using rubrics. A rubric is a set of ordered
categories to which a given piece of work can be compared. Scoring rubrics specify the qualities or processes
that must be exhibited in order to assign a particular evaluative rating for a performance (McDaniel, 1993). As a
grading tool, rubrics have successfully enable the instructors to assess the student’s understanding and creativity
to produce a solution in programming courses (Becker, 2003; Ahoniemi and Karavirta, 2009; Payne et al., 2012)
as well as evaluating research skills in strategic management (Whitesell and Helms, 2013), ethical behavior
(Carlin et al., 2011), critical thinking in engineering (Ralston and Bays, 2010; Loon and Lao, 2014), and
reflective writing in medicine (Wald et al., 2012).

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
54

This study hypothesizes that rubrics provide the necessary structure and guidance that enable instructors to
award marks as a whole for students’ ability in problem solving, creativity, and aesthetics of any graphical user
interface as well as the use of good programming practice and standards. The central focus of this research will
be on creating a set of rubrics as a benchmark to measure student learning outcomes in introductory computer
programming courses offered by the Faculty of Computer Science and Information Technology (FCSIT) at
Universiti Tun Hussein Onn Malaysia (UTHM). At present, UTHM has to cope with very large first year classes
with average of 70 students per section with multiple sections to cater four specializations of undergraduate
Computer Science programs: Software Engineering, Information Security, Web Technology, and Multimedia
Computing. This necessitates for more than one instructor and teaching assistants for lab sessions in each
program. Due to the high number of student enrollment and diverse background of the instructors or
demonstrators, grading lab assignments and group projects is particularly a challenge especially in ensuring fair
delivery to all students.

The main goal for this study is to promote critical and creative thinking skills and to improve grading
consistencies in programming subjects by introducing a generalized programming rubric to be used across all
programming languages such as C, C++, and Java. The outcome of this research is able to increase the
effectiveness in teaching and learning activities in terms of consistent assessment of the course learning
outcomes. The rubric developed in this study is presented in the section following the related works. Next, the
research methodology is detailed out to explain the validation process of the developed rubrics followed by the
findings. Finally, the paper is concluded with some indication for future research.

RELATED WORK
The Outcome-based Education (OBE) system emphasizes the importance of a curriculum content to be driven by
learning outcomes (Spady, 1994). In OBE, the learning outcomes are expressed as statements of knowledge and
skills individual students should possess at the end of the course they enrolled. An OBE system offers a
comprehensive approach to organize and operates an education system that is focused on successful
demonstration of learning sought from students at the end of the learning cycle (Murphy and Duncan, 2007).

The OBE system has been introduced to the Faculty of Computer Science and Information Technology (FCSIT)
at Universiti Tun Hussein Onn Malaysia (UTHM) since 2004. The learning outcomes of a program are set by
various level of academic management team at FCSIT. There are three primary components of the OBE system;
Program Educational Outcome (PEO), Program Learning Outcome (PLO), and Course Learning Outcome
(CLO). The PEO expresses statements of long term objectives that describe what a Computer Science should be
able to demonstrate as a result of attending its program. Clearly, the achievement of the PEO at faculty level is
geared to the achievement of the vison and mission of UTHM. Table 1 shows the PEO for one of the Computer
Science undergraduate program offered at FCSIT, which is the Bachelor of Computer Science (Software
Engineering).

Table 1: Program Educational Outcome (PEO).

PEO 1
Apply basic knowledge, principles and skills in the field of Computer Science to
meet the job specification.
(Knowledge / Practical Skills)

PEO 2

Implement the responsibility for solving problems analytically, critically, effective,
innovative and market-oriented.
(Critical Thinking and Problem Solving / Life-long Learning and Information
Management / Enterpreneurship Skills)

PEO 3
Acts effectively as an individual or in a group to convey information within the
organization and community.
(Team Working Skills / Communication Skills)

PEO 4
Practicing good values and ethics in a professional manner in the community and
able to act as a leader.
(Profesional, Social, Ethics, and Humanity / Leadership Skills)

The PEO statements are further refined to establish PLO. The PLOs highlight individual student’s abilities that
reflect their learning experiences at FCSIT. In addition, the management team of FCSIT is also required to
consider the general learning objectives set by the Malaysian Qualifications Agency (MQA, 2008) and the
Ministry of Higher Education (MOHE) in expressing the PLO. As a result, the PLO are expressed to satisfy
components of MQA standards which include knowledge, practical skills, communication, critical thinking and
problem solving, teamwork, life-long learning and information management, entrepreneurship, moral,
professional and ethics and finally leadership. Students of the undergraduate programs at FCSIT are expected to

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
55

acquire the PLO upon completion of their studies. The implementation of the PLO is he PLO is then distributed
across individual courses in the undergraduate programs. Table 2 shows the PLO for Computer Science
programs at FCSIT.

Table 2: Program Learning Outcome (PLO).

PLO 1
Applying knowledge and understanding of essential facts, concepts, principles and theories in the
field of Computer Science Software Engineering.
(Knowledge – K)

PLO 2
Implementing Software Engineering knowledge in analyzing, modeling, designing, developing and
evaluating effective computing solutions.
(Practical Skill – PS)

PLO 3
Communicate in spoken and written form in order to convey information, problems and solutions
to the problems effectively.
(Communication – CS)

PLO 4
Analyze the appropriate techniques in the field of Software Engineering to solve problems using
analytical skills and critical thinking.
(Critical Thinking, Problem Solving – CTPS)

PLO 5 Demonstrate teamwork skills, interpersonal and social effectively and confidently.
(Team Work – TS)

PLO 6 Using the skills and principles of lifelong learning in academic and career development.
(Life Learning and Information Management – LL)

PLO 7 Fostering entrepreneurship in career development.
(Enterpreneurship – ES)

PLO 8
Adopt values, attitudes and responsibilities in a professional manner from ths aspects of sosial,
ethics and humanity.
(Moral, Professional and Ethics – EM)

PLO 9 Effectively carry out the responsibilities of leadership.
(Leadership – LS)

The PLOs serve as the basis of determining the course learning outcomes (CLO) for every course offered. Each
set of programming CLO in the course syllabus is mapped to the PLO of FCSIT. The mapping is known as
CLO-PLO matrix. The CLO shall be constructed in such a way to accommodate the PLO. The establishment of
the CLO in programming courses applies principles of Bloom’s Taxonomy which covers three learning domains
outlined by MQA standard: cognitive, affective, and psychomotor (Bloom et al., 1994). Table 3 presents the
complete set of levels in each domain.

Table 3: Levels in cognitive, psychomotor, and affective domain based on Bloom’s taxonomy.
Level Cognitive Domain Level Psychomotor Domain Level Affective Domain

C1 Knowledge (KN) P1 Perception A1 Receiving phenomena
C2 Comprehension (CO) P2 Set A2 Responding to

phenomena
C3 Application (AP) P3 Guided response A3 Valuing
C4 Analysis (AN) P4 Mechanism A4 Organizing values
C5 Synthesis (SY) P5 Complex overt response A5 Internalizing values
C6 Evaluation (EV) P6 Adaptation

 P7 Origination

Eventually, to measure the achievement of cognitive, psychomotor, and affective domain in each CLO, a student
is evaluated using one to five assessment tools: quiz, test, laboratory assignments, project, and final exam. Each
of the assessment tool is assigned to ensure positive achievement for the courses. Indeed, such information has
implication on the achievement of CLO and PLO that are usually evaluated at the end of the learning process.
Table 4 shows a sample of specification table to evaluate the cognitive domain in an object-oriented
programming course. The specification table is designed to plan the distribution of marks based on taxonomy
level mapping. Such constructive mapping is valuable to evaluate how the CLO and PLO are evaluated and
related and finally implies the PEO.

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
56

Table 4: A specification table for an object-oriented programming course.
Question

No.
Course Content/ Topic Marks Distribution based on Bloom’s

Taxonomy
Subtotal

KN CO AP AN SY EV
Level 1 Level 2 Level 3

Q1 (a) Chapter 2: Primitive data types 3 24
Q1 (b) Chapter 3: Fundamental of OO 6
Q1 (c) Chapter 3: Fundamental of OO 6
Q1 (d) Chapter 4: Object and classes 9
Q2 (a) Chapter 3: Fundamental of OO 12 27
Q2 b) Chapter 3: Fundamental of OO 15
Q3 (a) Chapter 5: Inheritance and

polymorphism
 5 25

Q3 (b) Chapter 5: Inheritance and
polymorphism

 20

Q4 (a) Chapter 4: Object and classes 5 24
Q4 (b) Chapter 4: Object and classes 10
Q4 (c) Chapter 4: Object and classes 9

Subtotal based on taxonomy (Marks) 15 5 20 32 28 0 100
Subtotal for each level (Marks) 20 52 28 40%
Cognitive level (%) 20% 52% 28% 100%
Distribution of cognitive level (%) 5% 35% 60% 100%

At FCSIT, the specification table is used to assess only the cognitive domain via quizzes, tests, and final exams.
The assessment method is still using the answer scheme. However, assessments for lab assignments and projects
are not necessary being graded by the instructors but most of the time by the teaching assistants or lab
demonstrators. This calls for the need of a generalized rubric to cover all continuous learning assessments other
than tests and final exams.

RESEARCH METHODOLOGY
A rubric is a set of categories developed based on a specific set of performance criteria. As an assessment tool, a
rubric should cover all learning domains offered in computer programming courses. The purpose of such
classification is to categorize different objectives that educators set for the students because educators have to
focus on all three domains to create a more holistic form of delivery. In order to develop the rubric, the first step
is to identify the learning outcomes at the program level followed by the course level before the types of
assessments could be determined. The rubric can then be developed for a specific type of assessment such as lab
assignments or group projects. In this study, the rubric development and validation process are founded on the
principle of continuous feedback and improvement involving the following steps:

Step 1: Identify Program Learning Outcomes (PLO) and Course Learning Outcomes (CLO)
From the curricula, all programming courses are selected involving different languages (i.e. C, C++, Java). The
PLOs and CLOs for each course were tabulated and compared. At FCSIT, UTHM, each course has three CLOs
in average. Next, the assessment types were determined across all the courses and the percentage of each
assessment type according to the PLO and CLO were distributed. Again, the types of assessment include tests,
assignment, practical/lab, group project and final examination. Table 5 shows the mapping of PLOs and CLOs
across all programming courses. The types of assessments are also indicated for each learning objective.

From the list of assessment methods provided in the table, quiz, test, and final examinations in CLO1 are graded
based on traditional schema-based approach because the tools are only assessing the cognitive learning domain
in computer programming. Lab assignments (CLO2) and projects (CLO2, CLO3), however, are designed to
assess all three learning domains; cognitive, psychomotor, and affective. Because each CLO assess only one
learning domain, the rubrics developed will be categorized according to the CLO. For each CLO, the level of
domain for cognitive, psychomotor, affective are also assigned.

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
57

Table 5: Mapping of course learning outcomes to program learning outcomes across all programming courses.
 Program Learning Outcome (PLO)

K
no

w
le

dg
e

K
no

w
le

dg
e

&

Pr
ac

tic
al

C
om

m
un

ic
at

io
n

Sk
ill

s

C
rit

ic
al

 T
hi

nk
in

g
&

Pr

ob
le

m
 S

ol
vi

ng

Te
am

 W
or

ki
ng

 S
ki

lls

Li
fe

-lo
ng

 L
ea

rn
in

g

En
tre

pr
en

eu
rs

hi
p

Sk
ill

s

Pr
of

es
si

on
al

is
m

,
So

ci
al

, E
th

ic
s a

nd

H
it

Le
ad

er
sh

ip

Sk
ill

s

Course Learning
Outcomes (CLO)

PLO
1

PLO
2

PLO
3

PLO
4

PLO
5

PLO
6

PLO
7

PLO
8

PLO
9 Assessment

CLO
1

Design
problem
solving
process based
on object
oriented
concept.

 C5

 Quiz, Test,
Lab,
Project,
Final
Examinatio
n

CLO
2

Construct an
object
oriented
computer
application
using Java
programming
language.

P4

 Lab,
Project

CLO
3

Demonstrate
the
implementatio
n of object
oriented
concept using
any high level
programming
language.

 A3

 Project
Presentatio
n

Step 2: Formulate the rubric
In formulating the rubric, one or more dimensions that serve as the basis for judging the student work were
determined. Each CLO was broken into one or more objectively measurable performance criteria along with its
sub-criteria. The basic dimension in the rubric is the assessment type, whether delivered by the students in the
form of written reports or via presentation. Next, for each dimension, a scale of values from 1 to 5 on which to
rate each dimension is assigned; 1 is being very poor, 2 is poor, 3 is fair, 4 is good, and 5 is excellent. Finally,
within each scale, the standards of excellence for specified performance levels accompanied were provided.
Table 6 to Table 8 show the rubric for CLO1 (cognitive), CLO2 (psychomotor), and CLO3 (affective),
respectively.

Table 6: Rubric for CLO1. Design problem solving process using algorithm/object-oriented concepts
(Cognitive – C5, PLO4 – CTPS).

Assessme
nt

Criteria Sub-
criteria

Leve
l

1 2 3 4 5

Report

Ability to
analyze
problem
and
identify
requiremen
ts

Identify
correct
input/
output

C2 Unable
to
identify
any
input
and
output

Able to
identify
only one
input or
output

Able to
identify
correctly
some
input and
output

Able to
identify
correctly
all input
and
output

Able to
identify
correctly all
input and
output and
provide
alternative

Ability to Construct C3 Unable Able to Able to Able to Able to

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
58

demonstrat
e design
solution

correct
flowchart
or
pseudocod
e

to
construc
t

construct
but
mistake
on
symbol

construct
correctly

construct
correctly
and use
proper
elements

construct
correctly,
use proper
elements
and
documenta-
tion

Table 7: Rubric for CLO2. Construct a computer application/object oriented computer application using object:-

oriented concepts (Psychomotor – P4, PLO2 – Practical Skill)
Assessmen

t
Criteria Sub-criteria Leve

l
1 2 3 4 5

Report

Ability to
apply
required
data type
or data
structure

Appropriat
e choice of
variable
names or
data
structure
(i.e. array/
linked list)

P3 Unable
to
identify
required
data
type or
data
structur
e

Able to
identify
required
data type
or data
structure
but does
apply
correctly

Able to
apply
required
data type
or data
structure
but does
not
produce
correct
results

Able to
apply
required
data type
or data
structure
and
produce
partially
correct
results

Able to
apply
required
data type
or data
structure
and
produce
correct
results

Ability to
apply
required
control
structure

Correct
choice of
sequential,
selection or
repetition
control
structure

P4 Unable
to
identify
required
control
structur
e

Able to
identify
required
control
but does
apply
correctly

Able to
apply
required
control
structure
but does
not
produce
correct
results

Able to
apply
required
control
structure
and
produce
partially
correct
results

Able to
apply
required
control
structure
and
produce
correct
results

Ability to
run/debug

Free from
syntax,
logic, and
runtime
errors

P3 Unable
to run
program

Able to
run
program
but have
logic
error

Able to
run
program
correctly
without
any logic
error

Able to
run
program
correctly
without
any logic
error and
display
inappropri
ate output

Able to
run
program
correctly
without
any logic
error and
display
appropriat
e output

Ability to
perform
input
validation

Validate
input for
errors and
out-of-
range data

P3 The
program
produce
s
incorrec
t results

The
program
produces
correct
results
but does
not
display
correctly
Does not
check for
errors
and out-
of- range
data

The
program
produces
correct
results
but does
not
display
correctly.
Does
little
check for
errors
and out-
of- range
data

The
program
works and
meets all
specifica-
tions.
Does
some
checking
for errors
and out-
of- range
data

The
program
works and
meets all
specifica-
tions.
Does
exception
al
checking
for errors
and out-
of- range
data

Presentatio Ability to Comment / P1 No Docume Docume Document Document

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
59

n produce
readable
program

Description docume
ntation

ntation is
simple
comment
in code

ntation is
simple
comment
s
embedde
d in code
with
header
separatin
g the
codes

ation is
simple
comments
and
header
that useful
in
understan
ding the
code

ation is
well-
written
and
clearly
explains
what the
code is
accomplis
hing

Indentation
/ Naming
Convention

P2 Unable
to
organiz
e the
code

The code
is poorly
organize
d and
very
difficult
to read

The code
is
readable
only by a
person
who
already
knows its
purpose

The code
is fairly
easy to
read

The code
is
extremely
well
organized
and easy
to follow

Table 8: Rubric for CLO3. Demonstrate the implementation of problem solving process/object-oriented

concepts using high-level programming language (Affective – A3, PLO6 – Lifelong Learning)
Assessment Criteria Sub-criteria Leve

l
1 2 3 4 5

Presenta-
tion

Ability to
demonstrat
e program
in group

Demonstrat
e
understand-
ing on
program
design

A3 Unable
to
explain
program
design

Able to
explain a
little
program
design

Able to
explain
some
program
design

Able to
explain
entire
program
design
correctly
as it is

Able to
explain
program
design
correctly
and
provide
alternativ
e
solutions

Organizatio
n of group
presentatio
n

A4 Materials
are not
organize
d with
missing
infor-
mation

Materials
are
partially
organize
d with
missing
infor-
mation

Material
s are
partially
organize
d with
required
infor-
mation

Materials
are highly
organized
with
required
infor-
mation

Materials
are
highly
organize
d with
additiona
l infor-
mation

Cooperatio
n from all
members

A2 Unable
to
cooper-
ate in a
group

Forced
coopera-
tion
through
interven-
tion

Demon-
strate
coopera-
tion after
interven-
tion

Demon-
strate
coopera-
tion
through
personal
dominanc
e

Demon-
strate
coopera-
tion
through
group
hierarchy

The rubrics have been developed as a 2D grid in Microsoft Excel sheet, where each row describes one evaluation
criteria and the columns indicate the level of achievement. Since the rubric is already in an Excel form, the
instructors simply fill in the student performance according to the desired column and the form will add up the
corresponding values to produce a final score.

Step 3: Test the reliability of the rubric
Reliability refers to the consistency of assessment scores. On a reliable test, a student would expect to attain the
same score regardless of when the student completed the assessment, when the assessment was scored, and who

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
60

scored the assessment. In order to measure the reliability of the rubrics, the rater reliability in the form of
reliability coefficient is measured. Raters reliability refers to the consistency of scores that are assigned by two
independent raters (inter-rater reliability) and that are assigned by the same rater at different points in time (intra-
rater reliability) (Moskal and Leydens, 2000). According to Jonsson and Svingby (2007), the consensus
agreement among raters depends on the number of levels in the rubric, whereby fewer levels lead to higher
chance of agreement.

This study adopted the measurement of inter-rater reliability based on Kappa statistics (Cohen, 1960). In
Cohen’s kappa, values between 0.4 and 0.75 represent fair agreement beyond chance. Values ≤ 0 as indicating
no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as
substantial, and 0.81–1.00 as almost perfect agreement (McHugh, 2012).

EVALUATIONS
The rubrics developed in this study was implemented in three programming courses are offered during the First
Semester of 2015/2016. The courses were Computer Programming (BIT10303) using C programming language,
Object-Oriented Programming (BIT20603) using C++ programming language, and Java Programming
(BIT33803). The rubrics were consistently used for grading lab assignments and group projects throughout the
14-week period of the semester. All the assignments and projects were graded independently by two random
instructor or lab demonstrator using the same rubric. Table 9 shows the total number of students works/artifacts
being compiled and graded based on the rubrics.

Table 9: Summary of total written artifacts graded using the rubrics. The artifacts for lab assignments and
groups projects are in the form of source codes.

Course No. of
Students (a)

No. of Instructors/
Demonstrators

(b)

No.
of

Lab
(c)

No. of
Assignments

(d)

No. of
Projects

(e)

Total
Artifacts

(a * (c + d +
e))

BIT10303 60 (S1) + 37 (S2) = 97 2 9 1 1 1,067
BIT20603 73 (S1) + 37 (S2) =

110
2 7 1 1 990

BIT33803 76 (S1) = 76 1 5 0 1 456
Total 2,513

*Si indicate section number.

Based on Table 9, all sets of scores (i.e. four sets for BIT10303, two sets each for BIT20603 and BIT33803) are
then statistically analyzed for inter-rater reliability using the Cohen’s Kappa (Cohen, 1960). According to this
metric, a Kappa of 1 indicates a perfect agreement, whereas a kappa of 0 indicates agreement equivalent to
chance. The analysis was performed using the program Statistical Package for the Social Sciences (SPSS),
version 20.0. Note that the instructors or demonstrators are referred as raters in calculating the kappa values.
Two raters were randomly picked to evaluate the each artifact. Table 10 presents the results for both raters on
every artifact.

Table 10: Assessment results for 2,513 artifacts by two independent raters.

Rater #1

Rater #2

Total

1 (very
poor

)

2 (poor) 3 (fair) 4 (good) 5 (excellent)

1 (very poor) 364 207 0 0 0 571
2 (poor) 161 349 55 1 0 566
3 (fair) 0 6 295 108 2 411
4 (good) 0 1 18 312 109 440
5 (excellent) 0 0 3 107 415 525

 525 563 371 528 526 2,513

Based on Table 10, the total number of observed agreements is 735, which constitutes 69.04% of the
observations. The number of agreements expected by chance is 509.1, which is 20.26% of the observations. The
kappa value is 0.612 with 95% confidence interval from 0.589 to 0.634. Based on the kappa value, the reliability
of the rubrics is considered to be ‘good’ based on the strength of agreement between the two raters.

However, this calculation only considered exact matches between the two raters. Since the scale of dimensions

TOJET: The Turkish Online Journal of Educational Technology – January 2016, volume 15 issue 1

Copyright © The Turkish Online Journal of Educational Technology
61

(very poor, poor, fair, good, excellent) are ordered, close matches were also being considered. This means if the
first rater assessed an artifact as fair and the other as good, this is closer than if the rater assessed the artifact as
poor and the other excellent. The calculation of weighted kappa assumes the categories are ordered and accounts
for how far apart the two raters are. The weighted kappa is 0.810, therefore, using this approach the strength of
agreement or the reliability of the rubric can be considered to be ‘very good’. This indicates that the scoring
categories in the rubrics are well-defined and the differences between the score categories are clear.

CONCLUSIONS
A generic programming rubric is proposed to be used across all programming courses offered by FCSIT at
UTHM involving a variety of high-level programming languages such as C, C++, and Java. The rubrics are
shared with the students every time a lab exercise or assignment is assigned to help them better understand the
balance of the different activities in their final grade. From the rubrics, students are able to estimate the amount
of effort that are required to achieve the perfect score. In this way, students are also playing active role of
becoming independent in determining their own learning objectives. In the future, the rubrics will be used in
establishing benchmarks for the programming courses and analyzing student performance to improve the
learning and learning process including making adjustments to the curriculum.

ACKNOWLEDGEMENT
This project is sponsored by the Contract Research Grant from the Centre for Academic Development and
Training (CAD) at Universiti Tun Hussein Onn Malaysia (UTHM).

REFERENCES
Ahoniemi, T. & Karavirta, V. (2009) Analyzing the use of a rubric-based grading tool. 14th Annual ACM

SIGCSE Conference on Innovation and Technology in CS Education (pp.333-337).
Becker, B. (2003). Grading programming assignments using rubrics. 8th Annual Conference on Innovation and

Technology in Computer Science Education (pp.253-253). ACM, New York, NY, USA.
Bloom, B. S., Anderson, L., & Sosniak, L. (1994). “Bloom’s taxonomy: A forty-year retrospective”. Assessing

Scholarly. Chicago: NSSE. Ball, CE (2012).
Carlin, N., Rozmus, C., Spike, J., Willcockson, I., Seifert, W., Chappell, C., Hsieh, P.-H., Cole, T., Flaitz, C.,

Engebretson, J., Lunstroth, R., Amos, C., & Boutwell, B. (2011). The health professional ethics rubric:
Practical assessment in ethics education for health professional schools. Journal of Academic Ethics, vol.
9, no. 4 (pp.277-290).

Cohen, J. (1960). A coefficient for agreement for nominal scales. Education and Psychological Measurement,
vol. 20 (pp.37-46).

Herman, J.L. (1992). A practical guide to alternative assessment. Association for Supervision and Curriculum
Development, 1250 N. Pitt Street, Alexandria, VA 22314.

Jonsson, A. & Svingby, G. (2007) The use of scoring rubrics: Reliability, validity and educational consequences.
Educational Research Review, vol. 2 (2007) (pp.130-144).

Loon, J.E.V. & Lai, H.L. (2014). Information literacy skills as a critical thinking framework in the undergraduate
engineering curriculum. 2014 ASEE North Central Section Conference.

McDaniel, E. (1993). Understanding educational measurement. Dubuque, IA: William C. Brown.
McHugh, M.L. (2012) Interrater reliability: the kappa statistic. Biochem Med, vol. 22, no. 3 (pp.276–282).
Moskal, B.M. & Leydens, J.A. (2000). Scoring rubric development: validity and reliability. Practical

Assessment, Research & Evaluation, 7(10).
Malaysian Qualification Agency (MQA). (2008). Code of Practice for Programme Accreditation.
Murphy, J.J. & Duncan, B.L. (2007). Brief intervention for school problems (2nd ed.): Outcome-informed

strategies. New York: Guilford Press.
Payne, N., Kolb, D., & Kotze. G. (2012). “Scheming” to optimize marking in computer programming: From

memos to rubrics. ICERI 2012 (pp.869-877).
Ralston, P. & Bays, C. (2010). Refining a critical thinking rubric for engineering. American Society for

Engineering Education.
Spady, W.G. (1994). Outcome-based education: Critical issues and answers. American Association of School

Administrators, 1801 North Moore Street, Arlington, VA 22209.
Wald, H.S., Borkan, J.M., Taylor, J.S., Anthony, D., & Reis, S.P. (2012). Fostering and evaluating reflective

capacity in medical education: Developing the REFLECT rubric for assessing reflective writing.
Academic Medicine, vol. 87, no. 1 (pp.41-50).

Whitesell, M. & Helms, M.M. (2013). Assessing business students’ research skills for the capstone project in the
strategic management course. Journal of Business & Finance Librarianship, vol. 18, no. 1.

